Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium-2-naphtholate

Fig. 5.24. Regioselective azo coupling between diazotized sulfanilic acid and sodium 1-naphtholate (synthesis of Orange I). Fig. 5.24. Regioselective azo coupling between diazotized sulfanilic acid and sodium 1-naphtholate (synthesis of Orange I).
Nitrosylsulfuric acid, prepared by dissolving sodium nitrite in concentrated sulfuric acid, is employed for amines of low basicity, whose diazonium salts will hydrolyze in dilute acid. In order to synthesize Pigment Orange 5, for instance, 2,4-dinitroaniline is dissolved in concentrated sulfuric acid and diazotized preferably with nitrosylsulfuric acid. Coupling is carried out with a (3-naphthol suspension, produced by acidifying a sodium naphtholate solution. [Pg.272]

Develop the alkaline phosphatase with fast red dissolve 5 mg sodium naphthol AS BI phosphate in dimethylformamide (few drops) and add to 5 mg fast red TR salt in 10 ml veronal acetate buffer (pH = 9.2), incubate the slides for 1 h Wash with tap water Counterstain as desired... [Pg.113]

To determine whether the coupling reaction is completed, a drop of the reaction mixture is placed on filter paper. The colorless ring surrounding the speck of dye is treated with a drop of a solution of a reactive coupler such as sodium -naphtholate, R salt, or resorcinol, and then with a drop of soda solution or dilute sodium hydroxide. If unused diazo compound is present, dye is formed in the test spot. If the dye being made is easily soluble so that no colorless ring is formed, a small portion of the reaction mixture is treated in a test tube with salt to precipitate the dye, and a drop of this mixture is then used for the test. The presence of unused coupler can be determined in a similar manner, using a diazo solution to test the colorless ring. [Pg.142]

Sodium salt, C, H7NaO. sodium 8-naphtholate. sodium naphthol, Microcldin. Grayish-white powder becomes reddish Or brownish on exposure to light and air. Soluble in 3 parts water. Keep well closed and protected from light. [Pg.1010]

Required Aniline, 4-5 ml. hydrochloric acid, icml. sodium nitrite, 4 g. 2-naphthol, 7 g. [Pg.210]

Dissolve 4 5 ml. of aniline in a mixture of 10 ml. of concentrated hydrochloric acid and 20 ml. of water cool the solution to 5°, and diazotise by the addition of 4 g. of sodium nitrite dissolved in 20 ml, of water, observing the usual precautions given on page 181. Dissolve 7 g. of 2-naphthol in 60 ml. of 10% sodium hydroxide solution contained in a 200 ml. beaker, and cool this solution to 5 by external cooling, aided by the direct addition of about 20-30 g. of crushed ice. Now add the diazotised solution very slowly to the naphthol solution, keeping the latter well stirred meanwhile the mixed solutions immediately develop a deep red colour, and the benzeneazonaphthol should... [Pg.210]

Dissolve 10 g. of pure 2-naphthol in 30 ml. of 10% sodium hydroxide solution (i i mols.) contained in a stout-walled widenecked bottle of about 200 ml. capacity, and for which a well-... [Pg.220]

Azo-dye formation. Dissolve 2-3 drops of aniline in 1 ml. of cone. HCl and add 3 ml. of water. Shaike to dissolve any hydrochloride which may have separated and cool in ice. Add a few drops of 20% sodium nitrite solution. Add this cold diazonium solution to a cold solution of the phenol in an excess of aqueous NaOH solution. Solutions or precipitates of azo-dyes ranging in colour from orange through scarlet to dark red, according to the phenol used, are obtained. Note in particular that i-naphthol gives a brownish-red, 2-naphthol a scarlet precipitate. Catechol decomposes. [Pg.339]

Diazotisation. Dissolve 0 2 g. of the substance in about 5 ml. of dil. HCl, warming if necessary. Cool in ice-water and add sodium nitrite solution drop by drop the end of the diazotisation is marked by the complete decolorisation of the solution. Pour the diazonium solution into a cold solution of 2-naphthol in a considerable excess of NaOH solution a brilliant red dye is produced. [Pg.387]

Dilute sodium hydroxide solution (and also sodium carbonate solution and sodium bicarbonate solution) can be employed for the removal of an organic acid from its solution in an organic solvent, or for the removal of acidic impurities present in a water-insoluble solid or liquid. The extraction is based upon the fact that the sodium salt of the acid is soluble in water or in dilute alkali, but is insoluble in the organic solvent. Similarly, a sparingly soluble phenol, e.g., p-naphthol, CioH,.OH, may be removed from its solution in an organic solvent by treatment with sodium hydroxide solution. [Pg.151]

Picrates of p-naphthyl alkyl ethers. Alkyl halides react with the sodium or potassium derivative of p-naphthol in alcoholic solution to yield the corresponding alkyl p-naphthyl ethers (which are usually low m.p. solids) and the latter are converted by alcoholic picric acid into the crystalline picrates ... [Pg.292]

Mix together 1 0 g. of pure p-naphthol and the theoretical quantity of 50 per cent, potassium hydroxide solution, add 0-5 g. of the halide, followed by sufficient rectified spirit to produce a clear solution. For alkyl chlorides, the addition of a little potassium iodide is recommended. Heat the mixture under reflux for 15 minutes, and dissolve any potassium halide by the addition of a few drops of water. The p-naphthyl ether usually crystallises out on cooling if it does not, dilute the solution with 10 per cent, sodium hydroxide solution untU precipitation occurs. Dissolve the p-naphthyl ether in the minimum volume of hot alcohol and add the calculated quantity of picric acid dissolved in hot alcohol. The picrate separates out on cooling. Recrystallise it from rectified spirit. [Pg.292]

The amlnation reaction is reversible thus P-naphthylamine can be reconverted into p-naphthol by heating with aqueous sodium bisulphite solution, then adding alkali and boiling until all the ammonia is expelled. [Pg.561]

By condensation of diazotised sulphanilic acid with p-naphthol in the presence of sodium hydroxide, the useful dyestuff Orange II (p-sulphobenzene-azo-3-naphthol) is obtained ... [Pg.621]

It is interesting to note that azo dyestuffs may be conveniently reduced either by a solution of stannous chloride in hydrochloric acid or by sodium hyposulphite. Thus phenyl-azo-p-naphthol 3delds both aniline and a-amino-p-naphthol (see formula above), and methyl orange gives p-aminodimethylaniline and sulphanilic acid ... [Pg.621]

P-Naphthyl acetate. Dissolve 5 0 g. of p-naphthol in 25 ml. of 10 per cent, sodium hydroxide solution in a 250 ml. reagent bottle, add 60 g. of crushed ice, and 5-7 g. (5 -5 ml.) of acetic anhydride. Shake vigorously for 10-15 minutes the p-naphth acetate separates as colourless crystals. Filter with suction, wash with water, drain and dry in the air. Recrystallise from light petroleum (b.p. 60-80°) or from dilute alcohol. The yield of pure product, m.p. 71°, is 6-5 g. [Pg.669]

Naphthyl methyl ether (nerolin). Use 36 0 g. of p-naphthol, 10-5 g. of sodium hydroxide in 150 ml. of water, and add 31 -5 g. (23 -5 ml.) of dimethyl sulphate whilst the mixture is cooled in ice. Warm for 1 hour at 70-80°, and allow to cool. Filter oflF the naphthyl methyl ether at the pump, wash with 10 per cent, sodium hydroxide solution, then liberally with water, and drain thoroughly. Recrystallise from benzene or methylated spirit. The yield is 33 g., m.p. 72°. [Pg.670]

P-Hydroxy-a-naphthaldehyde, Equip a 1 litre three-necked flask with a separatory funnel, a mercury-sealed mechanical stirrer, and a long (double surface) reflux condenser. Place 50 g. of p-naphthol and 150 ml. of rectified spirit in the flask, start the stirrer, and rapidly add a solution of 100 g. of sodium hydroxide in 210 ml. of water. Heat the resulting solution to 70-80° on a water bath, and place 62 g. (42 ml.) of pure chloroform in the separatory funnel. Introduce the chloroform dropwise until reaction commences (indicated by the formation of a deep blue colour), remove the water bath, and continue the addition of the chloroform at such a rate that the mixture refluxes gently (about 1 5 hours). The sodium salt of the phenolic aldehyde separates near the end of the addition. Continue the stirring for a further 1 hour. Distil off the excess of chloroform and alcohol on a water bath use the apparatus shown in Fig. II, 41, 1, but retain the stirrer in the central aperture. Treat the residue, with stirring, dropwise with concentrated hydrochloric acid until... [Pg.704]

Place 20 g. of Orange II (Section IV,79) in a 600 ml. beaker and dissolve it in 250 ml. of water at 40-50°. Add, with stirring, 24-25 g. of sodium hyposulphite (Na SjO ) this discharges the colour and yields a pink or cream-coloured, finely-divided precipitate of a-amino-p-naphthol (compare Section IV,76). Heat the mixture nearly to boiling until it commences to froth considerably, then cool to 25° in ice, filter on a... [Pg.746]

Naphthyl benzoate. Dissolve 7 2 g. of p-naphthol in 40 ml. of 5 per cent, sodium hydroxide solution in the cold add a httle more water if necessary. If the solution is highly coloured, add 1 - 5 g. of decolourising... [Pg.784]

Treatment of a solution of sodium nitrite and the sodium salt of p-naphthol with sulphuric acid gives an excellent jdeld of a-nitroso- p-naphthol ... [Pg.958]

Dissolve 100 g. of p-naphthol (Section IV,102) in a warm solution of 28 g. of sodium hydroxide in 1200 ml. of water contained in a 2-5 htre round-bottomed or bolt-head flask fitted with a mechanical stirrer. Cool the solution to 0° in a bath of ice and salt, and add 50 g. of powdered sodium nitrite. Start the stirrer and add, by means of a separatory funnel supported above the flask, 220 g. (166-5 ml.) of sulphuric acid (sp. gr. 1 32) at such a rate that the whole is added during 90 minutes... [Pg.958]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

Acid-cataly2ed hydroxylation of naphthalene with 90% hydrogen peroxide gives either 1-naphthol or 2-naphthiol at a 98% yield, depending on the acidity of the system and the solvent used. In anhydrous hydrogen fluoride or 70% HF—30% pyridine solution at — 10 to + 20°C, 1-naphthol is the product formed in > 98% selectivity. In contrast, 2-naphthol is obtained in hydroxylation in super acid (HF—BF, HF—SbF, HF—TaF, FSO H—SbF ) solution at — 60 to — 78°C in > 98% selectivity (57). Of the three commercial methods of manufacture, the pressure hydrolysis of 1-naphthaleneamine with aqueous sulfuric acid at 180°C has been abandoned, at least in the United States. The caustic fusion of sodium 1-naphthalenesulfonate with 50 wt % aqueous sodium hydroxide at ca 290°C followed by the neutralization gives 1-naphthalenol in a ca 90% yield. [Pg.497]

Devrinol, 2-(l-naphthoxy)-Al,A/-diethylpropionamide/7 i25 5 -5 5 -7/ (napropamide) (23), which is prepared from 1-naphthol, is used as a herbicide (61). Another agricultural chemical, 1-naphthoxyacetic 2Lcid[2976-75-2] (24), is prepared by stirring 1-naphthol with monochloroacetic acid and sodium hydroxide in water at 100—110°C for several minutes. After treatment with concentrated HCl about 94% of the product is obtained (62). [Pg.497]

Naphthalenol. 2-Naphthol or p-naphthol or 2-hydroxynaphthalene/7i3 -/5 -i7 melts at 122°C and boils at 295°C, and forms colorless crystals of characteristic, phenoHc odor which darken on exposure to air or light. 2-Naphthol [135-19-3] is manufactured by fusion of sodium 2-naphthalenesulfonate with sodium hydroxide at ca 325°C, acidification of the drowned fusion mass which is quenched ia water, isolation and water-washing of the 2-naphthalenol, and vacuum distillation and flaking of the product. A continuous process of this type has been patented (69). The high sulfate content ia the primary effluent from 2-naphthol production is greatiy reduced ia modem production plants by the recovery of sodium sulfate. [Pg.498]

Naphthalenediol. This diol is prepared by the alkah fusion of 2-hydroxynaphthalene-6-sulfonic acid (Schaffer acid) at 290—295°C. Schaffer acid is usually produced by sulfonation of 2-naphthol with the addition of sodium sulfate at 85—105°C. This acid is also used as a coupling component in the production of a2o dyes such as Acid Black 26. 2,6-Naphthalenediol is used as a component in the manufacture of aromatic polyesters which, as is also tme of the corresponding amides, display Hquid crystal characteristics (52). [Pg.500]


See other pages where Sodium-2-naphtholate is mentioned: [Pg.224]    [Pg.181]    [Pg.189]    [Pg.282]    [Pg.375]    [Pg.376]    [Pg.100]    [Pg.253]    [Pg.362]    [Pg.11]    [Pg.254]    [Pg.363]    [Pg.240]    [Pg.248]    [Pg.209]    [Pg.221]    [Pg.568]    [Pg.623]    [Pg.625]    [Pg.648]    [Pg.668]    [Pg.703]    [Pg.960]    [Pg.1005]    [Pg.499]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



© 2024 chempedia.info