Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium demonstration

Harris SI, Stoltz RR, LeComte D, Hubbard RC. Parecoxib sodium demonstrates gastrointestinal safety comparable to placebo in healthy subjects. / Clin... [Pg.248]

Other sources of hazard arise from the handling of such chemicals as concentrated acids, alkalis, metallic sodium and bromine, and in working with such extremely poisonous substances as sodium and potassium cyanides. The special precautions to be observed will be indicated, where necessary, in the experiments in which the substances are employed, and will also be supplied by the demonstrator. The exercise of obvious precautions and cautious handling will in most cases reduce the danger to almost negligible proportions. Thus, if concentrated sulphuric acid should be accidentally spilled, it should be immediately washed with a liberal quantity of water or of a solution of a mild alkali. [Pg.206]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

Mercuration occurs m the 5-position (4501 as demonstrated b the subsequent conversion of the mercurated derivatives (209) to the corresponding 2-amino-5-halothiazoles (Scheme 132) (396. 451). The reaction is favored by the presence of sodium acetate (452). Nitrogen mercurated intermediates have never been isolated. [Pg.81]

Nucleophilic Displacement Reactions. The presence of activating groups, eg, o,p mX.1.0 groups, makes aromatic fluorine reactive in nucleophilic displacement reactions. This has been demonstrated by deterrnination of the relative fluorine—chlorine displacement ratios from the reaction of halonitroben2enes with sodium methoxide in methanol (137) F is displaced 200—300 times more readily than Cl. [Pg.321]

The first detailed investigation of the reaction kinetics was reported in 1984 (68). The reaction of bis(pentachlorophenyl) oxalate [1173-75-7] (PCPO) and hydrogen peroxide cataly2ed by sodium saUcylate in chlorobenzene produced chemiluminescence from diphenylamine (DPA) as a simple time—intensity profile from which a chemiluminescence decay rate constant could be determined. These studies demonstrated a first-order dependence for both PCPO and hydrogen peroxide and a zero-order dependence on the fluorescer in accord with an earher study (9). Furthermore, the chemiluminescence quantum efficiencies Qc) are dependent on the ease of oxidation of the fluorescer, an unstable, short-hved intermediate (r = 0.5 /is) serves as the chemical activator, and such a short-hved species "is not consistent with attempts to identify a relatively stable dioxetane as the intermediate" (68). [Pg.266]

As a part of the power demonstration program of the AFC in the 1950s, the Enrico Fermi fast breeder reactor (Fermi-1) was built near Detroit by a consortium of companies led by Detroit Edison. Fermi-1 used enriched uranium as fuel and sodium as coolant, and produced 61 MWe. It suffered a partial fuel melting accident in 1966 as the result of a blockage of core coolant flow by a metal plate. The reactor was repaired but shut down permanently in November 1972 because of lack of binding. Valuable experience was gained from its operation, however (58). [Pg.221]

The neat resin preparation for PPS is quite compHcated, despite the fact that the overall polymerization reaction appears to be simple. Several commercial PPS polymerization processes that feature some steps in common have been described (1,2). At least three different mechanisms have been pubUshed in an attempt to describe the basic reaction of a sodium sulfide equivalent and -dichlorobenzene these are S Ar (13,16,19), radical cation (20,21), and Buimett s (22) Sj l radical anion (23—25) mechanisms. The benzyne mechanism was ruled out (16) based on the observation that the para-substitution pattern of the monomer, -dichlorobenzene, is retained in the repeating unit of the polymer. Demonstration that the step-growth polymerization of sodium sulfide and /)-dichlorohenzene proceeds via the S Ar mechanism is fairly recent (1991) (26). Eurther complexity in the polymerization is the incorporation of comonomers that alter the polymer stmcture, thereby modifying the properties of the polymer. Additionally, post-polymerization treatments can be utilized, which modify the properties of the polymer. Preparation of the neat resin is an area of significant latitude and extreme importance for the end user. [Pg.442]

Technetium-99m oxidronate is a bone imaging agent used to demonstrate areas of altered osteogenesis. It is rapidly cleared from the blood and taken up in areas of bone that are undergoing osteogenesis. The kit is a vial containing a lyophilized powder where sodium oxidronate is the active... [Pg.483]

These surfactants, in conjunction with soap, produce bars that may possess superior lathering and rinsing in hard water, greater lather stabiUty, and improved skin effects. Beauty and skin care bars are becoming very complex formulations. A review of the Hterature clearly demonstrates the complexity of these very mild formulations, where it is not uncommon to find a mixture of synthetic surfactants, each of which is specifically added to modify various properties of the product. Eor example, one approach commonly reported is to blend a low level of soap (for product firmness), a mild primary surfactant (such as sodium cocoyl isethionate), a high lathering or lather-boosting cosurfactant, eg, cocamidopropyl betaine or AGS, and potentially an emollient like stearic acid (27). Such benefits come at a cost to the consumer because these materials are considerably more expensive than simple soaps. [Pg.158]

A process development known as NOXSO (DuPont) (165,166) uses sodium to purify power plant combustion flue gas for removal of nitrogen oxide, NO, and sulfur, SO compounds. This technology reHes on sodium metal generated in situ via thermal reduction of sodium compound-coated media contained within a flue-gas purification device, and subsequent flue-gas component reactions with sodium. The process also includes downstream separation and regeneration of spent media for recoating and circulation back to the gas purification device. A full-scale commercial demonstration project was under constmction in 1995. [Pg.169]

USP XXII specifies that sodium iodide contains 99—101.5% Nal, calculated on an anhydrous basis (4). It is used iaterchangeably with potassium iodide as a therapeutic agent, except where sodium ion is contraindicated (see Potassium compounds). Intravenous sodium iodide formulations have been used for a variety of diseases, from thyroid deficiency to neuralgia (see Thyroid and antithyroid preparations). However, these solutions are no longer listed ia the XFXUII (4), iadicatiag that their therapeutic value has not been satisfactorily demonstrated. [Pg.190]

Anatase and mtile are produced commercially, whereas brookite has been produced by heating amorphous titanium dioxide, which is prepared from an alkyl titanate or sodium titanate [12034-34-3] with sodium or potassium hydroxide in. an autoclave at 200—600°C for several days. Only mtile has been synthesized from melts in the form of large single crystals. More recentiy (57), a new polymorph of titanium dioxide, Ti02(B), has been demonstrated, which is formed by hydrolysis of K Ti O to form 20, followed by subsequent calcination/dehydration at 500°C. The relatively open stmcture... [Pg.120]

Conversion of the nitrile to the amide has been achieved by both chemical and biological means. Several patents have described the use of modified Raney nickel catalysts ia this appHcation (25,26). Also, alkaH metal perborates have demonstrated their utiHty (27). Typically, the hydrolysis is conducted ia the presence of sodium hydroxide (28—31). Owiag to the fact that the rate of hydrolysis of the nitrile to the amide is fast as compared to the hydrolysis of the amide to the acid, good yields of the amide are obtained. Other catalysts such as magnesium oxide (32), ammonia (28,29,33), and manganese dioxide (34) have also been employed. [Pg.49]

Calciferol, when hydrogenated catalyticaky, took up 4 moles of hydrogen and gave a compound with the empirical formula C2gH 2D. Sodium in ethanol reduction gave a dihydroproduct that reacted with 3 moles of perbenzoic acid, thus demonstrating the derivative to have three double bonds. [Pg.125]

Modem work on arsenical drugs can be said to have started in 1905 it was demonstrated that sodium hydrogen 4-aminophenylarsonate (Atoxyl)... [Pg.340]

The pH of the chlorine dioxide reaction mixture must be maintained in the 2.8—3.2 pH range, otherwise decreased conversion yields of chlorite to chlorine dioxide are obtained with by-product formation of chlorate. Generator efficiencies of 93% and higher have been demonstrated. A disadvantage of this system is the limited storage life of the sodium hypochlorite oxidant solution. [Pg.487]

Methybcanthine Diuretics. The mild diuretic effect of drinking coffee, from caffeine, and tea, mainly from theophylline, has been recogni2ed for along time. But the methylxanthines (Table 5) are of very limited efficacy when used as diuretics. The excretion of sodium and chloride ions are increased, but the potassium excretion is normal. Methylxanthines do not alter the urinary pH. Even though the methylxanthines have been demonstrated to have minor direct effects in the renal tubules, it is beUeved that they exert their diuretic effects through increased renal blood flow and GER (71). [Pg.210]

Although it has been reported (138) that decolorization of wastewater containing reactive azo dyes with sodium hydrosulfite is possible only to a limited extent, others have demonstrated good reduction (decolorization). For example, using zinc hydrosulfite for the decolorization of dyed paper stock (139) resulted in color reduction of 98% for azo direct dyes (139). A Japanese patent (140) describes reducing an azo reactive dye such as Reactive Yellow 3 with sodium hydrosulfite into its respective aromatic amines which ate more readily adsorbable on carbon than the dye itself. This report has been confirmed with azo acid, direct, and reactive dyes (22). [Pg.382]

Recent papers by a manufacturer of sodium borohydride, NaBH (145,146), have demonstrated that excellent removal of metals and color of acid, direct, and reactive dyes for textiles and paper can be achieved with bisulfite-catalyzed borohydride reduction in combination with polymer flocculation. [Pg.382]

Newkome and co-workers have demonstrated the operation of a template effect in the formation of a pyrido-ester-crown. In the reaction shown in Eq. (2.8), they treated 2-clTloronicotinoyl cliloride with either the disodium or dipotassium salt of pentaethylene glycol. TJie two reactions were conducted under identical conditions except for the presence of sodium vs. potassium cations. Since the product is a six-oxygen macrocycle, its formation would be expected to be favored by K" rather than Na" counter ions for the glycolate. In fact, the yields of crown-lactone were 30% and 48% respectively when Na" and K" were the templating cations. [Pg.17]


See other pages where Sodium demonstration is mentioned: [Pg.2457]    [Pg.204]    [Pg.321]    [Pg.223]    [Pg.476]    [Pg.489]    [Pg.38]    [Pg.213]    [Pg.221]    [Pg.354]    [Pg.218]    [Pg.264]    [Pg.467]    [Pg.482]    [Pg.163]    [Pg.487]    [Pg.264]    [Pg.272]    [Pg.535]    [Pg.433]    [Pg.153]    [Pg.304]    [Pg.295]    [Pg.485]    [Pg.42]    [Pg.50]    [Pg.9]    [Pg.462]    [Pg.377]   


SEARCH



Demonstration

Demonstrators

© 2024 chempedia.info