Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium chemical properties

Among the metals, for example, sodium and potassium are similar to each other and form similar compounds. Copper and iron are also metals having similar chemical properties but these metals are clearly different from sodium and potassium—the latter being soft metals forming mainly colourless compounds, whilst copper and iron are hard metals and form mainly coloured compounds. [Pg.1]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

The important chemical properties of acetyl chloride, CH COCl, were described ia the 1850s (10). Acetyl chloride was prepared by distilling a mixture of anhydrous sodium acetate [127-09-3J, C2H202Na, and phosphorous oxychloride [10025-87-3] POCl, and used it to interact with acetic acid yielding acetic anhydride. Acetyl chloride s violent reaction with water has been used to model Hquid-phase reactions. [Pg.81]

Phenol s chemical properties are characterized by the influences of the hydroxyl group and the aromatic ring upon each other. Although the stmcture of phenol is similar to cyclohexanol, phenol is a much stronger acid. Its piC in aqueous solution at 25°C is 9.89 x 10 ° (8). This characteristic allows aqueous hydroxides to convert phenol into their salts. The salts, especially those of sodium and potassium, are converted back into phenol by aqueous mineral acids or carboxyhc acids. [Pg.287]

The physical and chemical properties of silicate glasses depend on the composition of the material, ion size, and cation coordination number (9). A melt or glass having a Si02/Na20 ratio of 1, ie, sodium metasiUcate [1344-09-8] is expected to possess a high proportion of (SiO ) chains. At a ratio of 2, sheets might predominate. However, litde direct evidence has been shown for a clear predominance of any of these stmctures. The potential stmctures of sihcate melts of different ratios are discussed in detail elsewhere (10—12). [Pg.4]

Alkali sihcates are used as components, rather than reactants, in many appHcations. In many cases they only contribute partially to overall performance. Utility factors are generally not as easy to identify. Their benefit usually depends on the surface and solution chemical properties of the wide range of highly hydrophilic polymeric siUcate ions deUverable from soluble sihcate products or their proprietary modifications. In most cases, however, one or two of the many possible induences of these complex anions cleady express themselves in final product performance at a level sufficient to justify their use (102). Estimates of the 1995 U.S. consumption of sodium sihcates are shown in Table 6. [Pg.12]

Selected physical and chemical properties of sodium nitrate are Hsted in Table 1. At room temperature, sodium nitrate is an ododess and colodess soHd, moderately hygroscopic, saline in taste, and very soluble in water, ammonia, and glycerol. Detailed physical and chemical properties are also available (3,4). [Pg.192]

Physical and chemical properties of the three most important forms of sodium sulfate are summarized ia Table 3. The solubiUty of sodium sulfate ia water from 0 to 360°C is shown ia Figure 1 (5). The solubiUty of the NaClNa2S04-H2 0-saturated system is also shown. The aqueous solubiUty of sodium sulfate changes rapidly from 0 to 40°C, and addition of NaCl to a saturated solution of Na2S04 dramatically suppresses this solubiUty. These two effects are exploited by all manufacturers of sodium sulfate. [Pg.203]

Strontium [7440-24-6] Sr, is in Group 2 (IIA) of the Periodic Table, between calcium and barium. These three elements are called alkaline-earth metals because the chemical properties of the oxides fall between the hydroxides of alkaU metals, ie, sodium and potassium, and the oxides of earth metals, ie, magnesium, aluminum, and iron. Strontium was identified in the 1790s (1). The metal was first produced in 1808 in the form of a mercury amalgam. A few grams of the metal was produced in 1860—1861 by electrolysis of strontium chloride [10476-85-4]. [Pg.472]

Chemical Properties. Anhydrous sodium sulfite is stable in dry air at ambient temperatures or at 100°C, but in moist air it undergoes rapid oxidation to sodium sulfate [7757-82-6]. On heating to 600°C, sodium sulfite disproportionates to sodium sulfate and sodium sulfide [1313-82-2]. Above 900°C, the decomposition products are sodium oxide and sulfur dioxide. At 600°C, it forms sodium sulfide upon reduction with carbon (332). [Pg.148]

Chemical Properties. The chemistry of sodium metabisulfite is essentially that of the sulfite—bisulfite—metabisulfite—sulfurous acid system. The relative proportions of each species depend on the pH. The pH of a sodium bisulfite solution obtained by dissolving 10 wt % sodium metabisulfite in water at 20°C is 4.9 at 30 wt %, the pH is 4.4. [Pg.149]

Chemical Properties. Anhydrous sodium dithionite is combustible and can decompose exothermically if subjected to moisture. Sulfur dioxide is given off violentiy if the dry salt is heated above 190°C. At room temperature, in the absence of oxygen, alkaline (pH 9—12) aqueous solutions of dithionite decompose slowly over a matter of days. Increased temperature dramatically increases the decomposition rate. A representation of the decomposition chemistry is as follows ... [Pg.150]

Physical and Chemical Properties. Sodium thiocyanate [540-72-7] NaSCN, is a colorless dehquescent crystalline soHd (mp 323°C). It is soluble in water to the extent of 58 wt % NaSCN at 25°C and 69 wt % at 100°C. It is also highly soluble in methanol and ethanol, and moderately soluble in acetone. Potassium thiocyanate [333-20-0] KSCN, is also a colorless crystalline soHd (mp 172°C) and is soluble in water to the extent of 217 g/100 g of water at 20°C and in acetone and alcohols. Much of the chemistry of sodium and potassium thiocyanates is that of the thiocyanate anion (372—375). [Pg.152]

The dramatic improvements in the physical and chemical properties of tantalum powder produced by the sodium reduction process are evident in the lessening of chemical impurities (see Table 5). The much-improved chemistry reflects the many modifications to the process put in place after 1990. [Pg.327]

Chemical Properties. On thermal decomposition, both sodium and potassium chlorate salts produce the corresponding perchlorate, salt, and oxygen (32). Mixtures of potassium chlorate and metal oxide catalysts, especially manganese dioxide [1313-13-9] Mn02, are employed as a laboratory... [Pg.496]

Chemical Properties. When heated in a dry CO2 atmosphere, sodium cyanide fuses without much decomposition. A brown-black color... [Pg.381]

Lithium cyanide [2408-36-8] mbidium cyanide [19073-56 ] and cesium cyanide [21159-32-0] are white or colorless salts, isomorphous with potassium cyanide. In physical and chemical properties these cyanides closely resemble sodium and potassium cyanide. As of this writing these cyanides have no industrial uses. [Pg.385]

The abiHty of a given material to perform as an electronic embedding encapsulant depends largely on its properties. Ultrapure chemical properties with a low level of mobile ions such as sodium, potassium, and chloride are essential. Furthermore, the material s electrical, mechanical, and rheological properties are critical. [Pg.191]

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a collector (see p. 54). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures. [Pg.53]

The alkali metals form a homogeneous group of extremely reactive elements which illustrate well the similarities and trends to be expected from the periodic classification, as discussed in Chapter 2. Their physical and chemical properties are readily interpreted in terms of their simple electronic configuration, ns, and for this reason they have been extensively studied by the full range of experimental and theoretical techniques. Compounds of sodium and potassium have been known from ancient times and both elements are essential for animal life. They are also major items of trade, commerce and chemical industry. Lithium was first recognized as a separate element at the beginning of the nineteenth eentury but did not assume major industrial importance until about 40 y ago. Rubidium and caesium are of considerable academic interest but so far have few industrial applications. Francium, the elusive element 87, has only fleeting existence in nature due to its very short radioactive half-life, and this delayed its discovery until 1939. [Pg.68]

The Group 1 elements are soft, low-melting metals which crystallize with bee lattices. All are silvery-white except caesium which is golden yellow "- in fact, caesium is one of only three metallic elements which are intensely coloured, the other two being copper and gold (see also pp. 112, 1177, 1232). Lithium is harder than sodium but softer than lead. Atomic properties are summarized in Table 4.1 and general physical properties are in Table 4.2. Further physical properties of the alkali metals, together with a review of the chemical properties and industrial applications of the metals in the molten state are in ref. 11. [Pg.74]

The pulegone and the isopulegone series of compounds are very similar in their physical and chemical properties, but they differ sharply in the fact that pulegone yields menthol on reduction with sodium, whilst isopulegone does not. [Pg.239]

The electrolytic processing of concentrated ore to form the metal depends on the specific chemical properties of the metallic compound. To produce aluminum about 2 to 6 percent of purified aluminum oxide is dissolved in ciyolite (sodium alumi-no-fliioride, Na AlF ) at about 960°C. The reduction of the alumina occurs at a carbon (graphite) anode ... [Pg.772]

The compound sodium hydride, formed in reaction (29), is a crystalline compound with physical properties similar to those of sodium chloride. The chemical properties are very different, however. Whereas sodium burns readily in chlorine, it reacts with hydrogen only on heating to about 300°C. While sodium chloride is a stable substance that dissolves in water to form Na+(aqJ and CV(aq), the alkali hydrides bum in air and some of them ignite spontaneously. In contact with water, a vigorous reaction occurs, releasing hydrogen ... [Pg.100]

The mean value for this triad is reasonably close to Berzelius value for bromine of 78.383. Dobereiner also obtained a triad involving some alkali metals, sodium, lithium, and potassium, which were known to share many chemical properties ... [Pg.119]

The members of Group 1 are called the alkali metals. The chemical properties of these elements are unique and strikingly similar from one to another. Nevertheless, there are differences, and the subtlety of some of these differences is the basis of the most subtle property of matter consciousness. Our thinking, which relies on the transmission of signals along neurons, is achieved by the concerted action of sodium and potassium ions and their carefully regulated migration across membranes. So, even to learn about sodium and potassium, we have to make use of them in our brains. [Pg.707]


See other pages where Sodium chemical properties is mentioned: [Pg.256]    [Pg.330]    [Pg.2786]    [Pg.8]    [Pg.308]    [Pg.437]    [Pg.116]    [Pg.494]    [Pg.311]    [Pg.327]    [Pg.199]    [Pg.421]    [Pg.239]    [Pg.33]    [Pg.75]    [Pg.163]    [Pg.232]    [Pg.233]    [Pg.233]    [Pg.324]    [Pg.347]    [Pg.352]    [Pg.353]    [Pg.374]    [Pg.116]   
See also in sourсe #XX -- [ Pg.80 ]

See also in sourсe #XX -- [ Pg.569 ]

See also in sourсe #XX -- [ Pg.613 , Pg.614 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Sodium ammonium orthophosphates properties, chemical

Sodium chemical

Sodium hydroxide chemical properties

Sodium iodate properties, chemical

Sodium properties

© 2024 chempedia.info