Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydrides transformations

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a collector (see p. 54). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures. [Pg.53]

There are, however, cases when the hydrogen pretreatment results in an enhanced catalytic activity of an alloy. The phenomenon may be explained also in connection with a metal-metal hydride transformation, namely as a post-hydride effect. [Pg.287]

Primary dialkylboranes react readily with most alkenes at ambient temperatures and dihydroborate terminal acetylenes. However, these unhindered dialkylboranes exist in equiUbtium with mono- and ttialkylboranes and cannot be prepared in a state of high purity by the reaction of two equivalents of an alkene with borane (35—38). Nevertheless, such mixtures can be used for hydroboration if the products are acceptable for further transformations or can be separated (90). When pure primary dialkylboranes are required they are best prepared by the reduction of dialkylhalogenoboranes with metal hydrides (91—93). To avoid redistribution they must be used immediately or be stabilized as amine complexes or converted into dialkylborohydtides. [Pg.310]

The screened proton model of nickel or palladium hydrides and Switendick s concept of the electronic structure do not constitute a single approach sufficient to explain the observed facts. In this review, however, such a model will be used as the basis for further discussions. It allows for the explanation and general interpretation of the observed change of catalytic activity of the metals, when transformed into their respective hydrides. [Pg.251]

The mechanism of the poisoning effect of nickel or palladium (and other metal) hydrides may be explained, generally, in terms of the electronic theory of catalysis on transition metals. Hydrogen when forming a hydride phase fills the empty energy levels in the nickel or palladium (or alloys) d band with its Is electron. In consequence the initially d transition metal transforms into an s-p metal and loses its great ability to chemisorb and properly activate catalytically the reactants involved. [Pg.289]

It is probable that the negative charge induced by these three electrons on FeMoco is compensated by protonation to form metal hydrides. In model hydride complexes two hydride ions can readily form an 17-bonded H2 molecule that becomes labilized on addition of the third proton and can then dissociate, leaving a site at which N2 can bind (104). This biomimetic chemistry satisfyingly rationalizes the observed obligatory evolution of one H2 molecule for every N2 molecule reduced by the enzyme, and also the observation that H2 is a competitive inhibitor of N2 reduction by the enzyme. The bound N2 molecule could then be further reduced by a further series of electron and proton additions as shown in Fig. 9. The chemistry of such transformations has been extensively studied with model complexes (15, 105). [Pg.185]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

Molecular hydrogen is rather unreactive at ambient conditions, but many transition and lanthanide metal ions are able to bind and therefore activate H2, which results in transformation into H (hydride) 11 (hydrogen radical) or H+ (proton), and subsequent transfer of these forms of hydrogen to the substrate.7,8 In this context, not only metal hydride but also dihydrogen complexes of transition metal ions, play a key role,9 10 especially since the first structural characterization of one of these species in 1984 by Kubas.11... [Pg.76]

These observations illustrate that there are two transformations open to metallocarboxylic acid intermediates reversible loss of OH" accompanied by oxygen exchange, and metal-hydride formation with expulsion of C02. Our entry into this area of chemistry was in 1975 when extensive studies of oxygen lability in metal carbonyl cations were initiated (10). These... [Pg.112]

One must always keep in mind that in aqueous solutions the transition metal hydride catalysts may participate in further (or side) reactions in addition to being involved in the main catalytic cycle. H and P NMR studies established that in acidic solutions [RhCl(TPPMS)3] gave cis-fac-and ci5-7 er-[RhClH2(TPPMS)3] [86,88], while in neutral and basic solutions these were transformed to [RhHX(TPPMS)3] (X = H2O or Cl ) [86]. Simultaneous pH-potentiometiic titrations revealed, that deprotonation of the dihydride becomes significant only above pH 7, so this reaction of the catalyst plays no important role in the pH effects depicted on Figs. 3.2.a and 3.2.b. [Pg.73]

A number of complex metal hydrides such as lithium aluminium hydride (LiAlH4, abbreviated to LAH) and sodium borohydride (NaBHj) are able to deliver hydride in such a manner that it appears to act as a nucleophile. We shall look at the nature of these reagents later under the reactions of carbonyl compounds (see Section 7.5), where we shall see that the complex metal hydride never actually produces hydride as a nucleophile, but the aluminium hydride anion has the ability to effect transfer of hydride. Hydride itself, e.g. from sodium hydride, never acts as a nucleophile owing to its small size and high charge density it always acts as a base. Nevertheless, for the purposes of understanding the transformations. [Pg.205]

The majority of chemical methods for the asymmetric hydrogenation of unsaturated systems rely on the use of transition metal catalysts or stoichiometric amounts of metal hydride. The chemical importance of this transformation has led to the development of some of the most powerful and efficient methods in catalytic asymmetric synthesis. Routinely used on the milligram to multi-tonne scale, they represent one of the biggest success stories of asymmetric catalysis [120]. [Pg.308]


See other pages where Metal hydrides transformations is mentioned: [Pg.144]    [Pg.144]    [Pg.18]    [Pg.144]    [Pg.144]    [Pg.18]    [Pg.474]    [Pg.216]    [Pg.145]    [Pg.69]    [Pg.171]    [Pg.254]    [Pg.300]    [Pg.6]    [Pg.541]    [Pg.253]    [Pg.395]    [Pg.396]    [Pg.983]    [Pg.324]    [Pg.558]    [Pg.500]    [Pg.391]    [Pg.135]    [Pg.122]    [Pg.180]    [Pg.54]    [Pg.34]    [Pg.76]    [Pg.202]    [Pg.214]    [Pg.223]    [Pg.338]    [Pg.339]    [Pg.143]   
See also in sourсe #XX -- [ Pg.144 ]

See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Metal transformation

© 2024 chempedia.info