Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium arsenite, oxidation

In a 1-litre three-necked flask, mounted on a steam bath and provided respectively with a separatory funnel, mechanical stirrer and double surface condenser, place 165 g. of bromoform (96 per cent.). Add 10 ml. of a solution of sodium arsenite made by dissolving 77 g. of A.R. arsenious oxide and 148 g. of A.R. sodium hydroxide in 475 ml. of water. Warm the mixture gently to start the reaction, and introduce the remainder of the sodium arsenite solution during 30-45 minutes at such a rate that the mixture refluxes gently. Subsequently heat the flask on the steam bath for 3-4 hours. Steam distil the reaction mixture (Fig. 11, 41, 1) and separate the lower layer of methylene bromide (79 g.). Extract the aqueous layer with about 100 ml. of ether a further 3 g. of methylene bromide is obtained. Dry with 3-4 g. of anhydrous calcium chloride, and distil from a Claisen flask with fractionating side arm. The methylene bromide boils constantly at 96-97° and is almost colourless. [Pg.300]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Concurrently with the preparation of the phenyldiazonium chloride solution, prepare a cold suspension of sodium arsenite. Place 250 ml. of water in a 3-htre round-bottomed flask equipped with a mechanical stirrer. Heat the water to boding, add 125 g. of anhydrous sodium carbonate, and, as soon as the carbonate has dissolved, introduce 62 5 g. of pure arsenious oxide and 3 g. of crystallised copper sulphate with stirring. When all the solids have dissolved, cool the solution with stirring under a stream of tap water until the temperature has fallen to 15°. [Pg.618]

Methylene iodide [75-11-6], CH2I2, also known as diio dome thane, mol wt 267.87, 94.76% I, mp 6.0°C, and bp 181°C, is a very heavy colorless Hquid. It has a density of 3.325 g/mL at 20°C and a refractive index of 1.7538 at 4°C. It darkens in contact with air, moisture, and light. Its solubiHty in water is 1.42 g/100 g H2O at 20°C it is soluble in alcohol, chloroform, ben2ene, and ether. Methylene iodide is prepared by reaction of sodium arsenite and iodoform with sodium hydroxide reaction of iodine, sodium ethoxide, and hydroiodic acid on iodoform the oxidation of iodoacetic acid with potassium persulfate and by reaction of potassium iodide and methylene chloride (124,125). Diiodoform is used for determining the density and refractive index of minerals. It is also used as a starting material in the manufacture of x-ray contrast media and other synthetic pharmaceuticals (qv). [Pg.366]

The sodium arsenite solution may also be prepared by dissolving 39.6 g. (0.2 mole) of arsenious oxide and 32 g. (0.8 mole) of sodium hydroxide in 600 ml. of water. [Pg.61]

Nitrophenylarsonic acid has been prepared by heating p-nitrobenzenediazonium chloride with arsenious acid in hydrochloric acid, by the action of -nitrobenzenediazonium chloride on sodium arsenite, by the action of sodium arsenite on sodium -nitrobenzeneisodiazo oxide, by the diazotization of -nitro-aniline in acetic acid in the presence of arsenic chloride and cuprous chloride, and by the reaction of -nitrobenzenediazonium borofluoride with sodium arsenite in the presence of cuprous chloride. ... [Pg.62]

Chakravortty, D. et al., The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW 267.4 macrophage cells A role of Raf-1 in lipopolysaccharide signaling,./. Immunol., 166, 2011, 2001. [Pg.289]

Sodium arsenite does not oxidize in air while sodium sulphite oxidizes. When mixture of sodium arsenite and sodium sulphite is treated, both of them undergo simultaneous oxidation. Oxidation of sodium sulphite catalyses the oxidation of sodium arsenite. [Pg.144]

Geminal dihalides undergo partial or total reduction. The latter can be achieved by catalytic hydrogenation over platinum oxide [512], palladium [512] or Raney nickel [63, 512], Both partial and total reduction can be accomplished with lithium aluminum hydride [513], with sodium bis(2-meth-oxyethoxy)aluminum hydride [514], with tributylstannane [503, 514], electro-lytically [515], with sodium in alcohol [516] and with chromous sulfate [193, 197]. For partial reduction only, sodium arsenite [220] or sodium sulfite [254] are used. [Pg.64]

Iodine in aqueous solution may be measured quantitatively by acidifying the solution, diluting it, and titrating against a standard solution of sodium thiosulfate, sodium arsenite or phenyl arsine oxide using starch indicator. The blue color of the starch decolorizes at the end point. The indicator must be added towards the end of titration when the color of the solution turns pale yellow. Prior to titration, iodine in the dilute acidic solution is oxidized to iodate by adding bromine water or potassium permanganate solution. Excess potassium iodide is then added. The liberated iodine is then titrated as above. [Pg.401]

Arsenates have been described in one case exploiting the fact that the zirconyl cation forms a water-soluble arsenite but insoluble arsenate. By adding nitric acid to a solution of zirconyl chloride and sodium arsenite, the arsenite was oxidized to arsenate by the nitric acid, precipitating the insoluble zirconyl arsenate [32]. As for phosphates (and probably more readily), arsenates might be reduced to arsenides. [Pg.109]

Experiments were made on 100 g. lots of iodoform, using varying amounts (between 1 mole and 2 moles) of sodium arsenite. The yield is, in general, best when only a very slight excess over 1 mole of arsenious oxide is used. In every case the amount of sodium hydroxide employed was that called for by the theory. [Pg.58]

In some cases, however, the modus operandi is modified. In the oxidation of hydriodic acid with chromic acid, the data indicate that while liberation of iodine takes place, the vanadous or hypovanadic salt employed as the catalyst also undergoes oxidation to vanadate.2 The vanadium compound here belongs to the class of catalysts known as inductors, and the reaction is comparable to the oxidation in aqueous solution of sodium sulphite with sodium arsenite, whereby both sodium sulphate and sodium arsenate are produced. [Pg.34]

The combination of arsenic with dry nascent hydrogen was observed by Vournazos,14 who obtained a mixture of hydrogen and arsine by heating rapidly to 400° C. in a round-bottomed flask a mixture of three parts of powdered arsenic with eight parts of dry sodium formate. The addition of sodium hydroxide or lime to the mixture prevents the formation of sodium oxalate and hence of carbon monoxide. Arsenious oxide, sodium arsenite or arsenic acid may be used in place of arsenic, but the yields are small. The gas is also formed if arsenic vapour is passed over heated sodium formate. Also, if the sulphide or phosphide of arsenic is heated with the formate, hydrides of both components of the arsenic compound are formed but with metallic arsenides the hydride of the non-volatile component is not formed. [Pg.82]

The oxidation of arsenites by oxygen in the presence of sodium hydroxide is affected by the presence of other types of catalysts (see p. 175). Thus in the presence of copper sulphate and with less alkali than corresponds with Na3As03, the velocity of oxidation is very small, but with an increased amount of sodium hydroxide present, copper hydroxide or oxide is formed and the action is accelerated, and indeed copper oxide itself may be used as catalyst.2 With an excess of sodium hydroxide and a suitable quantity of copper oxide, normal sodium arsenite may be completely oxidised to arsenate in a few hours. Similarly the presence of an excess of sodium carbonate facilitates oxidation.3... [Pg.149]

Tingle x observed that a solution of arsenious oxide in aqueous alcohol, after boiling for 26 hours, was oxidised to arsenic acid, but this was denied by Edgerton.2 Kessler3 observed that when sodium arsenite was undergoing oxidation by chromic acid, oxidation by atmospheric oxygen occurred simultaneously. [Pg.150]

Colloidal saccharated iron is sometimes used in place of ferric hydroxide as an antidote in arsenical poisoning, but its adsorptive capacity depends on the alkalinity of the medium.4 Thus a commercial preparation containing 0-75 per cent, of sodium hydroxide was found to adsorb 12-57 per cent, of arsenious oxide (reckoned on the amount of iron present) addition of alkali increased the adsorption until, with 1-28 per cent, of sodium hydroxide present, there was a maximum adsorption of 27 per cent. The addition of acid correspondingly diminished the adsorption. A gel of ferric magnesium hydroxide, if prepared without boiling, also adsorbs arsenic from sodium arsenite solutions.5... [Pg.155]

Ferric orthoarsenite cannot be prepared directly from ferric hydroxide and arsenious oxide.4 The brown product obtained by shaking freshly precipitated ferric hydroxide with an aqueous solution of arsenious oxide has been described 5 as a basic ferric arsenite of composition 4Fe203.As203.5H20. A similar substance is obtained by adding aqueous arsenious oxide or sodium arsenite to ferric acetate solution. If ferric chloride, sulphate or nitrate is used, the ferric salt is not completely precipitated. The product is oxidised in moist air, and decomposes when heated. It is very doubtful whether this is a chemical individual, however, for it has been shown that the removal of arsenious oxide from the solution by the ferric hydroxide is due to adsorption, the amount removed depending upon the conditions and the age of the adsorbent. This subject is discussed more fully on p. 154. [Pg.168]

With sodium thiosulphate the arsenite forms oxythioarsenates (see p. 282), as it also does with tri- and tetra-thionates sodium dithionate does not react either in cold or boiling solution. Sodium tellurate causes oxidation to arsenate.1 An ammoniacal solution of silver azide is reduced to silver by sodium arsenite other metallic azides do not react. [Pg.176]

Sodium orthoarsenate is also obtained electrolytically by the method described under calcium arsenate (p. 198). Yields up to 100 per cent, may be obtained 9 by employing a cell with a diaphragm between iron electrodes. The anolyte should contain sodium arsenite, or sodium hydroxide and arsenious oxide (equivalent to 150 g. As2Os per litre), and the catholyte sodium hydroxide (150 g. per litre). With a current density of 3 amps, per sq. dm. the current efficiency is 100 per cent. A solid crust of sodium arsenate forms around the anode. The process may be rendered continuous by circulating the anolyte and removing the precipitated arsenate. Iron or nickel electrodes are... [Pg.221]

Experiments with house flies pointed to a considerable buffering action in the intestine.3 Solutions of arsenious acid and of the stoichiometric quantities of sodium hydroxide and arsenious oxide to form normal sodium arsenite, containing 15 g. of sucrose per 100 c.c., were fed to adult flies. The pH values of the former solutions were 6-58 to 6-96 and of the latter 11-3 to 11-4, but the toxicities were equal, being 0-14 mg. As per g. body weight—a large value for an insect. None of these solutions was repellent to the flies, but if the pH was increased beyond 11-4 repellent action was observed house fly bait therefore should not contain more alkali than is necessary to hold the arsenic in solution. The eradication of the tsetse fly by similar means is difficult. There is not much chance of a poisonous dose being taken from the skin of a dipped animal, but a toxic dose can be taken up from an arsenic-impregnated area by means of the proboscis.4... [Pg.306]


See other pages where Sodium arsenite, oxidation is mentioned: [Pg.268]    [Pg.399]    [Pg.39]    [Pg.1513]    [Pg.197]    [Pg.346]    [Pg.1513]    [Pg.45]    [Pg.254]    [Pg.509]    [Pg.57]    [Pg.121]    [Pg.152]    [Pg.155]    [Pg.159]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.294]    [Pg.197]    [Pg.197]    [Pg.268]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Arsenite

Arsenite oxidation

Arsenites

Sodium arsenite

Sodium arsenites

Sodium oxidation

Sodium oxide

© 2024 chempedia.info