Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium acyloin reaction

A useful method of forming carbon-carbon bonds involves reduction of esters with sodium metal in aprotic solvents such as ether or benzene and is called the acyloin reaction ... [Pg.852]

A much more general synthesis of these silyl enol ethers, however, is based on the reductive cleavage of the carbon-sulphur bond of the silyl enol ether of a thiolester using sodium metal and chlorotrimethylsilane, once again in a silyl acyloin reaction (Scheme 22)97,98. [Pg.1614]

Makosza, M., Grela, K. Convenient preparation of high-surface sodium in liquid ammonia. Use in the acyloin reaction. Synlett 1997, 267-268. [Pg.531]

The most useful of all allyl anion equivalents are the allyl silanes.20 This is because it is easy to make them regioselectively, because they do not undergo allylic rearrangement (silicon does not do a [1,3] shift) and because their reactions with electrophiles are very well controlled addition always occurring at the opposite end to the silicon atom. Symmetrical allyl silanes can be made from allyl-lithiums or Grignards by displacement of chloride from silicon. A useful variant is to mix the halide with a metal, e.g. sodium, and Me3SiCl in the same reaction, rather after the style of the silicon acyloin reaction,21 as in the synthesis of the acetal 80. [Pg.178]

Acyloin condensations of esters conducted with TMS-Cl and sodium in toluene give 1,2-bis(trimethyl-silyloxy)alkenes. In general, the silylacyloin reaction provides higher yields than the conventional acyloin reaction and is particularly useful for the preparation of cyclic enol silyl ethers. " The synthesis of compound (47) serves as an illustration. [Pg.602]

Many methods have been developed in an attempt to overcome the problem posed by entropy in the formation of large rings. Inclusion of unsaturation in the substrate reduces the number of degrees of freedom in it and consequently increases the possibility of the two ends of the chain meeting. In the acyloin reaction, electrostatic attraction is used to restrict movement of the alkyl chain. A dicarboxylic acid is added to a suspension of sodium (or another alkali metal) particles in an inert solvent. The acid functions react with the metal to form carboxylate anions, which are then held to the positive surface of the metal by electrostatic attraction. This means that the chain becomes a loop, fastened to the metal particle at each end until the two carboxylate groups approach close enough to allow the acyloin reaction to take place between them. [Pg.102]

This reaction was first reported by Bouveault and Blanc in 1903, and was further extended by Bouveault and Locquin. It is the synthesis of symmetrical a-hydroxy ketones via the reductive condensation of esters in an inert solvent in the presence of sodium. Since symmetrical a-hydroxy ketones, the aliphatic analogs of benzoins, are generally known as acyloins, the formation of a-hydroxy ketones from esters is simply referred to as acyloin condensation. In a few cases, it is also referred to as acyloin reaction." For the individual acyloin, the name is derived by adding the suffix oin to the stem name of corresponding acid, e.g., acetoin prepared from acetate. The most common method used to make acyloin is the reductive condensation of aliphatic esters with sodium in inert solvents, such as ether, xylene or even in liquid NH3 The yield of this reaction can be greatly improved when trimethylchlorosilane presents." " Intromolecular acyloin condensation from aliphatic diesters affords cyclic ketones of different ring sizes. [Pg.13]

The formation of acyloins (a-hydroxyketones of the general formula RCH(OH)COR, where R is an aliphatic residue) proceeds best by reaction between finely-divided sodium (2 atoms) and esters of aliphatic acids (1 mol) in anhydrous ether or in anhydrous benzene with exclusion of oxygen salts of enediols are produced, which are converted by hydrolysis into acyloins. The yield of acetoin from ethyl acetate is low (ca. 23 per cent, in ether) owing to the accompanying acetoacetic ester condensation the latter reaction is favoured when the ester is used as the solvent. Ethyl propionate and ethyl ji-butyrate give yields of 52 per cent, of propionoin and 72 per cent, of butyroin respectively in ether. [Pg.1080]

Butyroin has been prepared by reductive condensation of ethyl butyrate with sodium in xylene, or with sodium in the presence of chloro-trimethylsilane. and by reduction of 4,5-octanedlone with sodium l-benzyl-3-carbamoyl-l,4-dihydropyridine-4-sulfinate in the presence of magnesium chloride or with thiophenol in the presence of iron polyphthalocyanine as electron transfer agent.This acyloin has also been obtained by oxidation of (E)-4-octene with potassium permanganate and by reaction of... [Pg.174]

Toluene is commonly used. It can be dried by molecular sieves or direct distillation from calcium hydride into the reaction flask. Solvent stored over calcium hydride for several days is usually sufficiently dry to decant directly into the reaction flask, but distillation gives more consistent results. Any solvent with a boiling point sufficiently high to melt sodium is satisfactory. The submitters have also used methyl-cyclohexane and xylene in acyloin condensations. After the sodium is dispersed, the high-boiling solvent can be removed and replaced with anhydrous ether (as noted by the submitters) or can be retained and used in combination with ether (checkers). [Pg.3]

Upon heating of a carboxylic ester 1 with sodium in an inert solvent, a condensation reaction can take place to yield a a-hydroxy ketone 2 after hydrolytic workup. " This reaction is called Acyloin condensation, named after the products thus obtained. It works well with alkanoic acid esters. For the synthesis of the corresponding products with aryl substituents (R = aryl), the Benzoin condensation of aromatic aldehydes is usually applied. [Pg.1]

Whereas condensation of a-hydroxy ketones such as benzoin and acetoin on heating with formamide [240] or ureas in acetic acid [239, 242] to form imidazoles such as 769 or 770 is a well known reaction, only two publications have yet discussed the amination of silylated enediols, prepared by Riihlmann-acyloin condensation of diesters [241], by sodium, in toluene, in the presence of TCS 14 [241, 242]. Thus the silylated acyloins 771 and higher homologues, derived from Riihl-... [Pg.129]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

Another important reductive coupling is the conversion of esters to a-hydroxyketones (acyloin condensation).267 This reaction is usually carried out with sodium metal in an inert solvent. Good results have also been obtained for sodium metal dispersed on solid supports.268 Diesters undergo intramolecular reactions and this is also an important method for the preparation of medium and large carbocyclic rings. [Pg.450]

The reason why the acyloin synthesis is especially characteristic of aromatic aldehydes, depends on the circumstance that in the aromatic series the tertiary carbon atom in the ring does not allow of the aldol condensation, a reaction for which conditions are otherwise much more favourable. The simplest example of the acyloin condensation, moreover, was already encountered in the case of formaldehyde (p. 218) glycollic aldehyde is the simplest acyloin. Acyloin compounds are also produced, in the aliphatic series, by the action of sodium or potassium on esters, and hence are also formed as by-products in the acetoacetic ester synthesis (Bouveault, Scheibler). [Pg.223]

Preparation and phytochemical reduction of 2,2 -thenoin and 2,2 -thenil have been studied in the authors laboratory (20a). It has been shown that 2,2 -thenoin gives a color reaction similar to that shown by benzoin and other acyloin condensation products in- the presence of alcoholic alkali. The hydroxy ketone may be oxidized by iodine in the presence of sodium methoxide to give the diketone, 2,2 -thenil, in excellent yields. Phytochemical reduction was shown also to be applicable to both compounds. It is significant that thenoin differs from benzoin, since reduction products were not obtained enzymatically from the latter. [Pg.139]

Reactions reminiscent of pinacol reduction take place if esters are treated with sodium in aprotic solvents. The initially formed radical anion dimerizes and ultimately forms an a-hydroxy ketone, an acyloin. Such acyloin conden-... [Pg.151]

Alkyl alkanoates are reduced only at very negative potentials so that preparative scale experiments at mercury or lead cathodes are not successful. Phenyl alkanoates afford 30-36% yields of the alkan-l-ol under acid conditions [148]. Preparative scale reduction of methyl alkanoates is best achieved at a magnesium cathode in tetrahydrofuran containing tm-butanol as proton donor. The reaction is carried out in an undivided cell with a sacrificial magnesium anode and affords the alkan-l-ol in good yields [151]. In the absence of a proton donor and in the presence of chlorotrimethylsilane, acyloin derivatives 30 arc formed in a process related to the acyloin condensation of esters using sodium in xylene [152], Radical-anions formed initially can be trapped by intramolecular addition to an alkene function in substrates such as 31 to give aiicyclic products [151]. [Pg.354]

Another important reductive coupling is the conversion of esters to a-hydroxyketones (acyloins).185 This reaction is usually carried out with sodium metal in an inert solvent. [Pg.305]

The formation of furoin from furil represents the simplest and quickest demonstration of phytochemicai reduction for lecture purposes. The presence of the acyloin can be demonstrated, even in extreme dilution, by its characteristic reaction with aqueous or alcoholic sodium hydroxide (deep blue-green color with deep violet-red dichroic irridescence). This reaction can be carried out in unfiltered fermentation mixtures it gives positive results after thirty seconds. The addition of a few crystals of commercially available furil dissolved in one cc. alcohol to a fermenting sugar solution is suflBcient for demonstration. ... [Pg.91]

Acyloin-type reactions of esters provide the simplest route to 1-siloxy-l-alkoxycyclopropane [21,22] Eq. (6). The reaction of commercial 3-halopropionate with sodium (or lithium) in refluxing ether in the presence of Me3SiCl can easily be carried out on a one mole scale [21]. Cyclization of optically pure methyl 3-bromo-2-methylpropionate [23], available in both R and S form, gives a cyclopropane, which is enantiomerically pure at C-2, yet is a 1 1 diastereo-meric mixture with respect to its relative configuration at C-l Eq. (7). Reductive silylation of allyl 3-iodopropionate with zinc/copper couple provides a milder alternative to the alkali metal reduction [24] Eq. (8). [Pg.6]

A further general route to the 1,2-dicarbonyl system involves the oxidation of a-ketols (acyloins) (cf. the preparation of benzil from benzoin, Expt 6.143). The acyloins may be prepared from carboxylate esters by a radical coupling reaction involving the use of finely divided sodium metal in anhydrous ether, benzene, or toluene.144... [Pg.628]

The bimolecular reductive coupling of carboxylic esters by reaction with metallic sodium in an inert solvent under reflux gives an a-hydroxyketone, which is known as an acyloin. This reaction is favoured when R is an alkyl. With longer alkyl chains, higher boiling solvents can be used. The intramolecular version of this reaction has been used extensively to close rings of different sizes, e.g. paracyclophanes or catenanes. [Pg.36]

Carboxylic esters react with sodium metal to give a-hydroxy ketones (often referred to as acyloins). The reaction, known as the acyloin condensation, is thought to proceed by the mechanism shown in Figure Si3.13. [Pg.64]

The so-called acyloin condensation consists of the reduction of esters—and the reduction of diesters in particular—with sodium in xylene. The reaction mechanism of this condensation is shown in rows 2-4 of Figure 14.51. Only the first of these intermediates, radical anion C, occurs as an intermediate in the Bouveault-Blanc reduction as well. In xylene, of course, the radical anion C cannot be protonated. As a consequence, it persists until the second ester also has taken up an electron while forming the bis(radical anion) F. The two radical centers of F combine in the next step to give the sodium glycolate G. Compound G, the dianion of a bis(hemiacetal), is converted into the 1,2-diketone J by elimination of two equivalents of sodium alkoxide. This diketone is converted by two successive electron transfer reactions into the enediolate I, which is stable in xylene until it is converted into the enediol H during acidic aqueous workup. This enediol tautomerizes subsequently to furnish the a-hydroxyketone—or... [Pg.587]


See other pages where Sodium acyloin reaction is mentioned: [Pg.171]    [Pg.99]    [Pg.438]    [Pg.190]    [Pg.240]    [Pg.1562]    [Pg.452]    [Pg.219]    [Pg.147]    [Pg.9]    [Pg.219]    [Pg.152]    [Pg.152]    [Pg.324]    [Pg.1228]    [Pg.327]    [Pg.65]    [Pg.795]   
See also in sourсe #XX -- [ Pg.183 , Pg.190 , Pg.331 ]




SEARCH



Acyloin

Acyloin reaction

Acyloins

© 2024 chempedia.info