Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small intestine lipids

Lipids present in the diet may become rancid. When fed at high (>4-6%) levels, Hpids may decrease diet acceptabiUty, increase handling problems, result in poor pellet quaUty, cause diarrhea, reduce feed intake, and decrease fiber digestion in the mmen (5). To alleviate the fiber digestion problem, calcium soaps or prilled free fatty acids have been developed to escape mminal fermentation. These fatty acids then are available for absorption from the small intestine (5). Feeding whole oilseeds also has alleviated some of the problems caused by feeding Hpids. A detailed discussion of Hpid metaboHsm by mminants can be found (16). [Pg.156]

Drugs taken orally are slow to act. Most are absorbed in the small intestine where the villi, which penetrate into the lumen, present a large surface area. Unfortunately in order to pass through the gut wall into the bloodstream the drug has to become dissolved in its cell s membranes and to achieve this it needs to be lipid-soluble. [Pg.112]

Dietary fats, libers, and other carotenoids have been reported to interfere with carotenoid bioaccessibility. It is clear that by their presence in the gut, lipids create an environment in favor of hydrophobic compounds such as carotenoids. When arriving in the small intestinal lumen, dietary fats stimulate bile flow from the gallbladder and therefore enhance the micelle formation, which in turn could facilitate the emulsification of carotenoids into lipid micelles. Without micelle formation, carotenoids are poorly absorbed a minimum of 3 g of fat in meal is necessary for an efficient absorption of carotenoids, except for lutein esters that require higher amounts of fat. ... [Pg.159]

Digestion and absorption in the small intestine. Most digestion and absorption of carbohydrates, proteins, and lipids occurs in the small intestine. A summary of the digestive enzymes involved in these processes is found in Table 18.3. [Pg.300]

Proulx [30] summarized the published lipid compositions of BBM isolated from epithelial cells from pig, rabbit, mouse and rat small intestines. Table 3.1 shows the lipid make-up for the rat, averaged from five reported studies [30], On a molar basis, cholesterol accounts for about 50% of the total lipid content (37% on a weight basis). Thus, the cholesterol content in BBM is higher than that found in kidney epithelial (MDCK) and brain endothelial cells (Table 3.1). Slightly different BBM lipid distribution was reported by Alcorn et al. [31] here, the outer (luminal) leaflet of the BBM was seen to be rich in sphingomyelin content, while the inner leaflet (cytosol) was rich in PE and PC. Apical (brush border) and basolateral lipids are different in epithelia. The basolateral membrane content (not reported by... [Pg.52]

The absorption efficiency of the different carotenoids is variable. For example, (3-cryptoxanthin has been reported to have higher absorption efficiency than a-cryptoxanthin in rats (Breithaupt and others 2007). Carotenoids must be liberated from the food before they can be absorbed by intestinal cells (Faulks and Southon 2005). Mechanical disruption of the food by mastication, ingestion, and mixing leads to carotenoid liberation (Guyton and Hall 2001). The enzymatic and acid-mediated hydrolysis of carbohydrates, lipids, and proteins (chemical breaking of the food) also contributes to carotenoids liberation from the food matrix (Faulks and Southon 2005). Once released, carotenoids must be dissolved in oil droplets, which are emulsified with the aqueous components of the chyme. When these oil droplets are mixed with bile in the small intestine, their size is reduced, facilitating the hydrolytic processing of lipids by the pancreatic enzymes (Pasquier and others 1996 Furr and Clark 1997 ... [Pg.200]

Bile acids aid in the digestion of dietary lipids. They are made in the liver and secreted into the small intestine in the bile where they emulsify lipids. [Pg.279]

Fats and other lipids are poorly soluble in water. The larger the accessible surface is—i. e., the better the fat is emulsified—the easier it is for enzymes to hydrolyze it (see p. 270). Due to the special properties of milk, milk fats already reach the gastrointestinal tract in emulsified form. Digestion of them therefore already starts in the oral cavity and stomach, where lipases in the saliva and gastric juice are available. Lipids that are less accessible—e.g., from roast pork—are emulsified in the small intestine by bile salts and bile phospholipids. Only then are they capable of being attacked by pancreatic lipase [4] (see p. 270). [Pg.272]

Dietary fat consists essentially of mixed triglycerides. These fatty lipids pass through the stomach into the small intestine without much change in structure. In the small intestine, triglycerides are partly hydrolyzed by an enzyme (lipase) that leads to the formation of oil-water emulsion. [Pg.66]

Biosynthesis represents the major metabolic fate of cholesterol, accounting for more than half of the 800 mg/day of cholesterol that the average adult uses up in metabolic processes. By comparison, steroid hormone biosynthesis consumes only about 50 mg of cholesterol per day. Much more that 400 mg of bile salts is required and secreted into the intestine per day, and this is achieved by recycling them. Most of the bile salts secreted into the upper region of the small intestine are absorbed along with the dietary lipids that they emulsified at the lower end of the small intestine. They are... [Pg.66]

One of the physiological mechanisms which can help poorly lipid-soluble molecules to cross the small intestinal mucosa is the process of active transport-molecules actively shuttled across the membrane, commonly riding on transporter molecules and moving through the expenditure of cellular energy. [Pg.126]

Vitamin A absorption from the small intestine requires dietary fat and pancreatic lipase to break down retinyl esters and bile salts to promote the uptake of retinol and carotene. Drugs, such as mineral oil, neomycin and cholestyramine, that can modify lipid absorption from the gastrointestinal tract can impair vitamin A absorption. The use of oral contraceptives can signihcantly increase plasma vitamin A levels. [Pg.782]

CN160 Kalra, S., S. Mahmood, ]. P. Nagpaul, and A. Mahmood. Changes in the chemical composition of surfactantlike particles secreted by rat small intestine in response to different dietary fats. Lipids 2002 37(5) 463-468. [Pg.151]

Alcohol, taken orally, is absorbed in the stomach but mostly from the small intestine into the bloodstream. It first reaches the liver, where some alcohol is immediately metabolized (first-pass metabolism) by the enzyme alcohol dehydrogenase. Alcohol is a water-soluble chemical and distributes throughout body fluids but not readily into body fat. Females, who naturally have more lipid (fat) tissue per pound of mass, will have a higher BAG than males after consuming the same amount of alcohol. [Pg.75]

It is not certain that the presence of CLA in tissue lipids is due entirely to the production of cis-9, trans-11 as an intermediate during the biohydrogenation of linoleic acid in the rumen. However, the amount of CLA in milk (7 J) and butter (14) is positively correlated to the level of dietary linoleic acid. Some long chain fatty acid intermediates reach the small intestine and are normally absorbed and deposited into adipose tissue (75). There is seasonal variation in CLA content of milk, with the highest values occurring usually in summer (76). [Pg.263]

Among the different roles previously described, the liver exerts an excretory function, being involved in the formation of bile, which drains into the small intestine. Bile salts in the bile play an important role as emulsifying agents for the reabsorption of lipids and fatty acids from the intestine. Hepatic and obstructive biliary diseases lead to abnormal metabolism of bile acids (BAs). [Pg.607]


See other pages where Small intestine lipids is mentioned: [Pg.468]    [Pg.603]    [Pg.180]    [Pg.495]    [Pg.100]    [Pg.477]    [Pg.146]    [Pg.507]    [Pg.13]    [Pg.132]    [Pg.196]    [Pg.291]    [Pg.297]    [Pg.302]    [Pg.29]    [Pg.201]    [Pg.165]    [Pg.507]    [Pg.12]    [Pg.210]    [Pg.489]    [Pg.504]    [Pg.30]    [Pg.32]    [Pg.104]    [Pg.201]    [Pg.268]    [Pg.108]    [Pg.67]    [Pg.50]    [Pg.430]    [Pg.108]    [Pg.24]    [Pg.609]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Intestine lipids

Small intestine

© 2024 chempedia.info