Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Size distribution conditions

Size, shape, size distribution Conditions of polymerization/destabilization Sol aging... [Pg.466]

Che pore size distribution and Che pore geometry. Condition (iil). For isobaric diffusion in a binary mixture Che flux vectors of Che two species must satisfy Graham s relation... [Pg.66]

It is less well known, but certainly no less important, that even with carbon dioxide as a drying agent, the supercritical drying conditions can also affect the properties of a product. Eor example, in the preparation of titania aerogels, temperature, pressure, the use of either Hquid or supercritical CO2, and the drying duration have all been shown to affect the surface area, pore volume, and pore size distributions of both the as-dried and calcined materials (34,35). The specific effect of using either Hquid or supercritical CO2 is shown in Eigure 3 as an iHustration (36). [Pg.3]

Eactors that could potentiaHy affect microbial retention include filter type, eg, stmcture, base polymer, surface modification chemistry, pore size distribution, and thickness fluid components, eg, formulation, surfactants, and additives sterilization conditions, eg, temperature, pressure, and time fluid properties, eg, pH, viscosity, osmolarity, and ionic strength and process conditions, eg, temperature, pressure differential, flow rate, and time. [Pg.140]

Catalyst performance depends on composition, the method of preparation, support, and calcination conditions. Other key properties include, in addition to chemical performance requkements, surface area, porosity, density, pore size distribution, hardness, strength, and resistance to mechanical attrition. [Pg.152]

As illustrated ia Figure 6, a porous adsorbent ia contact with a fluid phase offers at least two and often three distinct resistances to mass transfer external film resistance and iatraparticle diffusional resistance. When the pore size distribution has a well-defined bimodal form, the latter may be divided iato macropore and micropore diffusional resistances. Depending on the particular system and the conditions, any one of these resistances maybe dominant or the overall rate of mass transfer may be determined by the combiaed effects of more than one resistance. [Pg.257]

Activated carbons are made by first preparing a carbonaceous char with low surface area followed by controlled oxidation in air, carbon dioxide, or steam. The pore-size distributions of the resulting products are highly dependent on both the raw materials and the conditions used in their manufacture, as maybe seen in Figure 7 (42). [Pg.275]

Figure 18 is an entrainment or gas-carryiag capacity chart (25). The operating conditions and particle properties determine the vertical axis the entrainment is read off the dimensionless horizontal axis. For entrainment purposes, the particle density effect is considered through the ratio of the particle density to the density of water. When the entrainable particle-size distribution is smaller than the particle-size distribution of the bed, the entrainment is reduced by the fraction entrainable, ie, the calculated entrainment rate from Figure 18 is multipfled by the weight fraction entrainable. [Pg.80]

Apparent Density. This term refers to the weight of a unit volume of loose powder, usually expressed in g/cm (l )- The apparent density of a powder depends on the friction conditions between the powder particles, which are a function of the relative surface area of the particles and the surface conditions. It depends, furthermore, on the packing arrangement of the particles, which depends on the particle size, but mainly on particle size distribution and the shape of the particles. [Pg.181]

Suspension Polymers. Methacrylate suspension polymers are characterized by thek composition and particle-size distribution. Screen analysis is the most common method for determining particle size. Melt-flow characteristics under various conditions of heat and pressure are important for polymers intended for extmsion or injection molding appHcations. Suspension polymers prepared as ion-exchange resins are characterized by thek ion-exchange capacity, density (apparent and wet), solvent sweUing, moisture holding capacity, porosity, and salt-spHtting characteristics (105). [Pg.270]

Analysis of a method of maximizing the usefiilness of smaH pilot units in achieving similitude is described in Reference 67. The pilot unit should be designed to produce fully developed large bubbles or slugs as rapidly as possible above the inlet. UsuaHy, the basic reaction conditions of feed composition, temperature, pressure, and catalyst activity are kept constant. Constant catalyst activity usuaHy requires use of the same particle size distribution and therefore constant minimum fluidization velocity which is usuaHy much less than the superficial gas velocity. Mass transport from the bubble by diffusion may be less than by convective exchange between the bubble and the surrounding emulsion phase. [Pg.518]

The characteristic separation curve can be deterrnined for any size separation device by sampling the feed, and coarse and fine streams during steady-state operation. A protocol for determining such selectivity functions has been pubHshed (4). This type of testing, when properly conducted, provides the relationships among d K, and a at operating conditions. These three parameters completely describe a size separation device and can be used to predict the size distribution of the fine and coarse streams. [Pg.434]

The summation term is the mass broken into size interval / from all size intervals between j and /, and S is the mass broken from size internal i. Thus for a given feed material the product size distribution after a given time in a mill may be deterrnined. In practice however, both S and b are dependent on particle size, material, and the machine utilized. It is also expected that specific rate of breakage should decrease with decreasing particle size, and this is found to be tme. Such an approach has been shown to give reasonably accurate predictions when all conditions are known however, in practical appHcations severe limitations are met owing to inadequate data and scale-up uncertainties. Hence it is stiH the usual practice to carry out tests on equipment to be sure of predictions. [Pg.139]

Because of the complexity of designs and performance characteristics, it is difficult to select the optimum atomizer for a given appHcation. The best approach is to consult and work with atomizer manufacturers. Their technical staffs are familiar with diverse appHcations and can provide valuable assistance. However, they will usually require the foUowing information properties of the Hquid to be atomized, eg, density, viscosity, and surface tension operating conditions, such as flow rate, pressure, and temperature range required mean droplet size and size distribution desired spray pattern spray angle requirement ambient environment flow field velocity requirements dimensional restrictions flow rate tolerance material to be used for atomizer constmction cost and safety considerations. [Pg.334]

Tantalum Compounds. Potassium heptafluorotantalate [16924-00-8] K TaF, is the most important tantalum compound produced at plant scale. This compound is used in large quantities for tantalum metal production. The fluorotantalate is prepared by adding potassium salts such as KCl and KF to the hot aqueous tantalum solution produced by the solvent extraction process. The mixture is then allowed to cool under strictiy controlled conditions to get a crystalline mass having a reproducible particle size distribution. To prevent the formation of oxyfluorides, it is necessary to start with reaction mixtures having an excess of about 5% HF on a wt/wt basis. The acid is added directiy to the reaction mixture or together with the aqueous solution of the potassium compound. Potassium heptafluorotantalate is produced either in a batch process where the quantity of output is about 300—500 kg K TaFy, or by a continuously operated process (28). [Pg.327]

In order to define the extent of emissions from automotive brakes and clutches, a study was carried out in which specially designed wear debris collectors were built for the dmm brake, the disk brake, and the clutch of a popular U.S. vehicle (1). The vehicle was driven through various test cycles to determine the extent and type of brake emissions generated under all driving conditions. Typical original equipment and aftermarket friction materials were evaluated. Brake relines were made to simulate consumer practices. The wear debris was analyzed by a combination of optical and electron microscopy to ascertain the asbestos content and its particle size distribution. It was found that more than 99.7% of the asbestos was converted to a nonfibrous form and... [Pg.275]

Precipitated Calcium Carbonate. Precipitated calcium carbonate can be produced by several methods but only the carbonation process is commercially used in the United States. Limestone is calcined in a kiln to obtain carbon dioxide and quicklime. The quicklime is mixed with water to produce a milk-of-lime. Dry hydrated lime can also be used as a feedstock. Carbon dioxide gas is bubbled through the milk-of-lime in a reactor known as a carbonator. Gassing continues until the calcium hydroxide has been converted to the carbonate. The end point can be monitored chemically or by pH measurements. Reaction conditions determine the type of crystal, the size of particles, and the size distribution produced. [Pg.410]

Transition aluminas are good catalyst supports because they are inexpensive and have good physical properties. They are mechanically stable, stable at relatively high temperatures even under hydrothermal conditions, ie, in the presence of steam, and easily formed in processes such as extmsion into shapes that have good physical strength such as cylinders. Transition aluminas can be prepared with a wide range of surface areas, pore volumes, and pore size distributions. [Pg.173]

The pore-size distribution and the nature of the pores in catalyst supports and hence the catalysts derived from them are important properties that significantly affect catalyst performance (16). In most cases, catalyst designers prefer an open-pore stmcture, that is, pores that have more than one opening, and a pore size as uniform as possible in order to obtain maximum utilization of the available pore volume. This can be achieved by careful choice of raw materials and processing conditions. [Pg.194]


See other pages where Size distribution conditions is mentioned: [Pg.340]    [Pg.526]    [Pg.67]    [Pg.38]    [Pg.284]    [Pg.52]    [Pg.139]    [Pg.313]    [Pg.368]    [Pg.73]    [Pg.430]    [Pg.431]    [Pg.57]    [Pg.184]    [Pg.379]    [Pg.494]    [Pg.400]    [Pg.32]    [Pg.156]    [Pg.255]    [Pg.520]    [Pg.45]    [Pg.302]    [Pg.305]    [Pg.313]    [Pg.402]    [Pg.435]    [Pg.112]    [Pg.526]    [Pg.404]    [Pg.194]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Conditional distribution

Distributive condition

© 2024 chempedia.info