Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simulation techniques continuum models

The integral equation method is free of the disadvantages of the continuum model and simulation techniques mentioned in the foregoing, and it gives a microscopic picture of the solvent effect within a reasonable computational time. Since details of the RISM-SCF/ MCSCF method are discussed in the following section we here briefly sketch the reference interaction site model (RISM) theory. [Pg.419]

There is a view developing concerning the accomplishments of shock-compression science that the initial questions posed by the pioneers in the field have been answered to a significant degree. Indeed, the progress in technology and description of the process is impressive by any standard. Impressive instrumentation has been developed. Continuum models of materials behavior have been elaborated. Techniques for numerical simulation have been developed in depth. [Pg.199]

The last thirty years have seen a flowering of simulation techniques based on explicit treatments of solvent molecules (some references are given above). Such methods provide new insight into the reasons why continuum methods work or don t work. However they have not and never will replace continuum models. In fact, continuum models are sometimes so strikingly successful that hubris may be the most serious danger facing their practitioners. One of the goals of this present chapter will be to diffuse (but not entirely deflate ) any possible overconfidence. [Pg.4]

An interesting combined use of discrete molecular and continuum techniques was demonstrated by Floris et al.181,182 They used the PCM to develop effective pair potentials and then applied these to molecular dynamics simulations of metal ion hydration. Another approach to such systems is to do an ab initio cluster calculation for the first hydration shell, which would typically involve four to eight water molecules, and then to depict the remainder of the solvent as a continuum. This was done by Sanchez Marcos et al. for a group of five cations 183 the continuum model was that developed by Rivail, Rinaldi et al.14,108-112 (Section III.2.ii). Their results are compared in Table 14 with those of Floris et al.,139 who used a similar procedure but PCM-based. In... [Pg.68]

It is clear from the above that the continuum model can simulate only those aspects of the solvent which are somewhat independent from hydrophobicity, hydrophyUicity, generally the first solvation shell, and specific interactions with the solute. The physical problem is a general one namely, it relates to the validity to use quantities, correctly described and defined at the macroscopic level, in the discrete description of matter at the atomic level. For such study, one needs explicit consideration of the solvent, for example the molecules of water. This can be done either at the quantum-mechanical level, as in cluster computations. Another approach is to simulate the system at the molecular dynamics (or Monte Carlo) level these techniques allow us to consider... [Pg.285]

When structural and dynamical information about the solvent molecules themselves is not of primary interest, the solute-solvent system may be made simpler by modeling the secondary subsystem as an infinite (usually isotropic) medium characterized by the same dielecttic constant as the bulk solvent, that is, a dielectric continuum. Theoretical interpretation of chemical reaction rates has a long history already. Until recently, however, only the chemical reactions of systems containing a few atoms in the gas phase could be studied using molecular quantum mechanics due to computational expense. Fortunately, very important advances have been made in the power of computer-simulation techniques for chemical reactions in the condensed phase, accompanied by an impressive progress in computer speed (Gonzalez-Lafont et al., 1996). [Pg.286]

The possible role of solvent dynamics in influencing reaction in solutions has recently received considerable scrutiny. We cannot exhaustively review the impressive number of recent methodological and applicative contributions in this field, which have been supported and stimulated by new experimental evidence based on innovative techniques, and by the increasing reliability of molecular dynamics and MC simulations. Following the approach used in the previous Section to treat the static description of the solvent, we shall focus our review about dynamical aspects almost entirely on methods in which the continuum model plays a key role. [Pg.20]

This review has illustrated various properties of multiphase polymer systems obtained from computer simulation. Three modeling techniques - atomistic, coarse-grained, and atomistic-continuum modeling - are applied to miscibility of homopolymer/copolymer and homopolymer/homopolymer blends, compat-ibilizing effect of block copolymers, and mechanical properties of semicrystalline polymers, respectively. [Pg.46]

From the standpoint of the continuum simulation of processes in the mechanics of materials, modeling ultimately boils down to the solution of boundary value problems. What this means in particular is the search for solutions of the equations of continuum dynamics in conjunction with some constitutive model and boundary conditions of relevance to the problem at hand. In this section after setting down some of the key theoretical tools used in continuum modeling, we set ourselves the task of striking a balance between the analytic and numerical tools that have been set forth for solving boundary value problems. In particular, we will examine Green function techniques in the setting of linear elasticity as well as the use of the finite element method as the basis for numerical solutions. [Pg.64]

Summary. In conclusion, some suggestions are made on how to model the problem of radiative heat transfer in porous media. First, we must choose between a direct simulation and a continuum treatment. Wherever possible, continuum treatment should be used because of the lower cost of computation. However, the volume-averaged radiative properties may not be available in which case continuum treatment cannot be used. Except for the Monte Carlo techniques for large particles, direct simulation techniques have not been developed to solve but the simplest of problems. However, direct simulation techniques should be used in case the number of particles is too small to justify the use of a continuum treatment and as a tool to verify dependent scattering models. [Pg.681]

The discussion of modeling and simulation techniques for microreactors shows that the toolbox available at present is quite diverse and goes well beyond the standard capabilities of CFD methods available in commercial solvers. In micro-reactors, special methods needed for the modeling of noncontinuum physics play only a minor role and most of the effects are described by the standard continuum equations. However, even if the laminar nature of the flow somehow reduces the difficulty of simulation problems compared to macroscopic flows, there are a number of problems that are extremely difficult and require very fine computational grids. Among these problems is the numerical study of mixing in liquids that often suffers severely from discretization artefacts. [Pg.74]

Computational techniques have extensively been used to stu(fy the interfacial mechanics and nature of bonding in CNT-polymer composites. The computational studies can be broadly classified as atomistic simulations and continuum methods. The atomistic simulations are primarily based onMD simulations and DFT [105-110], The main focus of these techniques was to understand and stndy the effect of bonding between the polymer and nanotube (covalent, electrostatic or vdW forces) and the effect of friction on the interface. The continuum methods extend the continuum theories of microme-chanics modeling and fiber-reinforced composites (elaborated in the next section) to CNT-polymer composites [111-114] and explain the behavior of the composite from a mechanics point of view. [Pg.180]

Molecular sciences look for explanations of macroscopic properties, e.g., solubility, from the microscopic properties of matter. Statistical mechanics is one of such disciplines, which hnks those two pictures through the probabilistic treatment of particle ensembles. The application of Kirkwood s continuum solvent approach to nondissociating fluids resulted in a variety of simulation techniques. Applications of such techniques to study phase equilibria have been reported widely in literature [1-10]. Although some simple hydrocarbons can nowadays be reasonably well described by molecular modeling (molecular dynamics and Monte Carlo simulations), water and especially water mixtures, still represent challenges for such simulations techniques despite 30 years of active parameterization of appropriate force-fields. This is due to the extremely strong and complicated electrostatic and hydrogen-bond interactions. [Pg.19]

The recent development of high-resolution experimental techniques allows for the structural analysis of protein channels with unprecedented detail. However, the fundamental problem of relating the structure of ion channels to their function is a formidable task. This chapter describes some of the most popular simulation approaches used to model channel systems. Particle-based approaches such as Brownian and molecular dynamics will continue to play a major role in the study of protein channels and in validating the results obtained with the extremely fast continuum models. Research in the area of atomistic simulations will focus mainly on the force-field schemes used in the ionic dynamics simulation engines. In particular, polar interactions between the various components of the system need to be computed with algorithms that are more accurate than those currently used. The effects of the local polarization fields need to be accounted for explicitly and, at the same time, efficiently. Continuum models will remain attractive for their efficiency in depicting the electrostatic landscape of protein channels. Both Poisson-Boltzmann and Poisson-Nemst-Plank solvers will continue to be used to... [Pg.283]


See other pages where Simulation techniques continuum models is mentioned: [Pg.2363]    [Pg.123]    [Pg.267]    [Pg.687]    [Pg.180]    [Pg.56]    [Pg.119]    [Pg.57]    [Pg.91]    [Pg.301]    [Pg.323]    [Pg.45]    [Pg.106]    [Pg.324]    [Pg.296]    [Pg.496]    [Pg.43]    [Pg.3]    [Pg.56]    [Pg.2]    [Pg.120]    [Pg.338]    [Pg.255]    [Pg.99]    [Pg.42]    [Pg.367]    [Pg.455]    [Pg.4]    [Pg.30]    [Pg.186]    [Pg.251]    [Pg.3]    [Pg.57]    [Pg.443]    [Pg.449]   


SEARCH



Continuum modeling

Continuum modelling

Continuum technique

Modeling technique

Simulant modeling

Simulated model

Simulated modeling

Simulation techniques

© 2024 chempedia.info