Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct-simulation technique

Alternative methods of analysis have been examined and evaluated. Shokoohi and Elrod[533] solved the Navier-Stokes equations numerically in the axisymmetric form. Bogy15271 used the Cosserat theory developed by Green.[534] Ibrahim and Linl535 conducted a weakly nonlinear instability analysis. The method of strained coordinates was also examined. In spite of the mathematical or computational elegance, all of these methods suffer from inherent complexity. Lee15361 developed a 1 -D, nonlinear direct-simulation technique that proved to be a simple and practical method for investigating the nonlinear instability of a liquid j et. Lee s direct-simulation approach formed the... [Pg.322]

Summary. In conclusion, some suggestions are made on how to model the problem of radiative heat transfer in porous media. First, we must choose between a direct simulation and a continuum treatment. Wherever possible, continuum treatment should be used because of the lower cost of computation. However, the volume-averaged radiative properties may not be available in which case continuum treatment cannot be used. Except for the Monte Carlo techniques for large particles, direct simulation techniques have not been developed to solve but the simplest of problems. However, direct simulation techniques should be used in case the number of particles is too small to justify the use of a continuum treatment and as a tool to verify dependent scattering models. [Pg.681]

Using different types of time-stepping techniques Zienkiewicz and Wu (1991) showed that equation set (3.5) generates naturally stable schemes for incompressible flows. This resolves the problem of mixed interpolation in the U-V-P formulations and schemes that utilise equal order shape functions for pressure and velocity components can be developed. Steady-state solutions are also obtainable from this scheme using iteration cycles. This may, however, increase computational cost of the solutions in comparison to direct simulation of steady-state problems. [Pg.74]

Normal mode analysis exists as one of the two main simulation techniques used to probe the large-scale internal dynamics of biological molecules. It has a direct connection to the experimental techniques of infrared and Raman spectroscopy, and the process of comparing these experimental results with the results of normal mode analysis continues. However, these experimental techniques are not yet able to access directly the lowest frequency modes of motion that are thought to relate to the functional motions in proteins or other large biological molecules. It is these modes, with frequencies of the order of 1 cm , that mainly concern this chapter. [Pg.153]

These apparent restrictions in size and length of simulation time of the fully quantum-mechanical methods or molecular-dynamics methods with continuous degrees of freedom in real space are the basic reason why the direct simulation of lattice models of the Ising type or of solid-on-solid type is still the most popular technique to simulate crystal growth processes. Consequently, a substantial part of this article will deal with scientific problems on those time and length scales which are simultaneously accessible by the experimental STM methods on one hand and by Monte Carlo lattice simulations on the other hand. Even these methods, however, are too microscopic to incorporate the boundary conditions from the laboratory set-up into the models in a reahstic way. Therefore one uses phenomenological models of the phase-field or sharp-interface type, and finally even finite-element methods, to treat the diffusion transport and hydrodynamic convections which control a reahstic crystal growth process from the melt on an industrial scale. [Pg.855]

We have seen that the deposition of crystals from the vapor is much too slow to model by MD techniques. Most laboratory equipment for producing thin films involves relatively slow crystal growth processes, and is not suitable for direct simulation. Information on the stability and properties of thin films can be obtained by similar modeling techniques, however. We describe below some of our results that provide necessary data to find the equilibrium configuration of thin films at low temperatures. [Pg.230]

The Gibbs Ensemble MC simulation methodology [17-19] enables direct simulations of phase equilibria in fluids. A schematic diagram of the technique is shown in Fig. 10.1. Let us consider a macroscopic system with two phases coexisting at equilibrium. Gibbs ensemble simulations are performed in two separate microscopic regions, each within periodic boundary conditions (denoted by the dashed lines in Fig. 10.1). The thermodynamic requirements for phase coexistence are that each... [Pg.356]

In the case of classic chemical kinetics equations, one can get in a few cases analytical solution for the set of differential equations in the form of explicit expressions for the number or weight fractions of i-mcrs (cf. also treatment of distribution of an ideal hyperbranched polymer). Alternatively, the distribution is stored in the form of generating functions from which the moments of the distribution can be extracted. In the latter case, when the rate constant is not directly proportional to number of unreacted functional groups, or the mass action law are not obeyed, Monte-Carlo simulation techniques can be used (cf. e.g. [2,3,47-52]). This technique was also used for simulation of distribution of hyperbranched polymers [21, 51, 52],... [Pg.129]

Studying the dynamics of systems in the time domain involves direct solutions of differential equations. The computer simulation techniques of Part II are very general in the sense that they can give solutions to very complex nonlinear problems. However, they are also very specific in the sense that they provide a solution to only the particular numerical case fed into the computer. [Pg.167]

Understanding the dependence of film structure and morphology on system layout and process parameters is a core topic for the further development of ZnO technology. Work is being performed on in situ characterization of deposition processes. Growth processes are simulated using Direct Simulation Monte-Carlo (DSMC) techniques to simulate the gas flow and sputter kinetics simulation and Particle-ln-Cell Monte-Carlo (PICMC) techniques for the plasma simulation [132]. [Pg.228]


See other pages where Direct-simulation technique is mentioned: [Pg.323]    [Pg.323]    [Pg.15]    [Pg.189]    [Pg.637]    [Pg.14]    [Pg.852]    [Pg.136]    [Pg.435]    [Pg.110]    [Pg.235]    [Pg.119]    [Pg.92]    [Pg.4]    [Pg.68]    [Pg.87]    [Pg.446]    [Pg.78]    [Pg.29]    [Pg.214]    [Pg.435]    [Pg.71]    [Pg.88]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.61]    [Pg.81]    [Pg.2]    [Pg.945]    [Pg.66]    [Pg.70]    [Pg.28]    [Pg.393]    [Pg.167]    [Pg.91]    [Pg.81]    [Pg.223]    [Pg.5]    [Pg.402]    [Pg.88]   
See also in sourсe #XX -- [ Pg.322 ]




SEARCH



Direct-space techniques simulated annealing

Simulation techniques

Simulation techniques direct methods

© 2024 chempedia.info