Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nucleophiles alkenes

Electrophilic addition mechanism Electrophile adds to less substituted alkene carbon, nucleophile to more substituted alkene carbon (12-3)... [Pg.1308]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

Alkenes coordinated by Pd(II) are attacked by carbon nucleophiles, and carbon-carbon bond formation takes place. The reaction of alkenes with carbon nucleophiles via 7r-allylpalladium complexes is treated in Section 3.1. [Pg.47]

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

No reaction of soft carbon nucleophiles takes place with propargylic acet-ates[37], but soft carbon nucleophiles, such as / -keto esters and malonates, react with propargylic carbonates under neutral conditions using dppe as a ligand. The carbon nucleophile attacks the central carbon of the cr-allenylpal-ladium complex 81 to form the rr-allylpalladium complex 82, which reacts further with the carbon nucleophile to give the alkene 83. Thus two molecules of the a-monosubstituted /3-keto ester 84, which has one active proton, are... [Pg.465]

Examine the eleetrostatic potential map of eaeh nueleophile (enamine, silyl enol ether, lithium enolate and enol) with emphasis on the face of the nucleophilic alkene carbon. Rank the nucleophiles from most electron rich to least electron rich. What factors are responsible for this order (Hint For each molecule, consider an alternative Lewis structure to that given above that places a negative charge on the nucleophilic carbon.)... [Pg.166]

The reaction begins with an attack on the electrophile, HBr, by the electrons of the nucleophilic tt bond. Two electrons from the 7t bond form a new u bond between the entering hydrogen and an alkene carbon, as shown by the curved arrow at the top of Figure 6.7. The carbocation intermediate that results is itself an electrophile, which can accept an electron pair from nucleophilic Br ion to form a C Brbond and yield a neutral addition product. [Pg.188]

The conjugate addition of a nucleophile to an a,fi-unsaturated aldehyde or ketone is caused by the same electronic factors that are responsible for direct addition. The electronegative oxygen atom of the a,/3-unsaturated carbonyl compound withdraws electrons from the /3 carbon, thereby making it electron-poor and more electrophilic than a typical alkene carbon. [Pg.726]

The reaction between an aldehyde and a carbon nucleophile, such as a sulfur ylide, constitutes an alternative approach to the synthesis of epoxides. Since alkenes, which are the normal epoxidation substrates, are often formed from aldehydes, this approach can be highly efficient. On the other hand, the synthesis of appropriate carbon nucleophiles usually requires additional steps. [Pg.324]

This section deals with reactions that correspond to Pathway C, defined earlier (p. 64), that lead to formation of alkenes. The reactions discussed include those of phosphorus-stabilized nucleophiles (Wittig and related reactions), a a-silyl (Peterson reaction) and a-sulfonyl (Julia olefination) with aldehydes and ketones. These important rections can be used to convert a carbonyl group to an alkene by reaction with a carbon nucleophile. In each case, the addition step is followed by an elimination. [Pg.157]

Scheme 2.23 provides some examples of conjugate addition reactions. Entry 1 illustrates the tendency for reaction to proceed through the more stable enolate. Entries 2 to 5 are typical examples of addition of doubly stabilized enolates to electrophilic alkenes. Entries 6 to 8 are cases of addition of nitroalkanes. Nitroalkanes are comparable in acidity to (i-ketocslcrs (see Table 1.1) and are often excellent nucleophiles for conjugate addition. Note that in Entry 8 fluoride ion is used as the base. Entry 9 is a case of adding a zinc enolate (Reformatsky reagent) to a nitroalkene. Entry 10 shows an enamine as the carbon nucleophile. All of these reactions were done under equilibrating conditions. [Pg.184]

Suitably semi-protected pyranoses can react with soft carbon nucleophiles generating mixtures of alditols that can undergo elimination of water and intramolecular addition of the 8-hydroxy group to the intermediate alkenes.94,95... [Pg.49]

The mechanism of the reaction in Figure 15.4 involves coordination of palladium to the alkene and nucleophilic attack of oxygen at the internal carbon atom to form the flve-membered ring. Palladium is bonded to the exocyclic carbon atom. (3-hydride elimination gives the exocyclic methylene,... [Pg.324]

Two examples of exocyclic alkenes at the 3-position acting as carbon nucleophiles have also been published. The reactions are shown in Schemes 44 <1987J(P1)1027> and 45 <1999T7915>. [Pg.644]

The intramolecular addition of carbon nucleophiles to alkenes has received comparatively little attention relative to heterocyclization reactions. The first examples of Pd-catalyzed oxidative carbocyclization reactions were described by Backvall and coworkers [164-166]. Conjugaled dienes with appended al-lyl silane and stabilized carbanion nucleophiles undergo 1,4-carbochlorination (Eq. 36) and carboacetoxylation (Eq. 37), respectively. The former reaction employs BQ as the stoichiometric oxidant, whereas the latter uses O2. The authors do not describe efforts to use molecular oxygen in the reaction with allyl silanes however, BQ was cited as being imsuccessful in the reaction with stabihzed car-banions. Benzoquinone is known to activate Ti-allyl-Pd intermediates toward nucleophilic attack (see below. Sect. 4.4). In the absence of BQ, -hydride eUm-ination occurs to form diene 43 in competition with attack of acetate on the intermediate jr-allyl-Pd" species to form the 1,4-addition product 44. [Pg.100]

Widenhoefer has developed methods for Pd-catalyzed addition of 1,3-dicarbonyl nucleophiles to alkenes [ 171-173]. Most of these reactions employ stoichiometric copper as the oxidant however, Yang and coworkers recently reported a modified procedure that employs cocatalytic lanthanide Lewis acids to achieve direct dioxygen-coupled turnover (Eq. 39) [174], The Lewis acid is thought to activate the carbon nucleophile, P-keto amide, toward attack on the tethered alkene. [Pg.101]

Preparation of Tr-Allylpalladium Complexes from Alkenes and Their Reactions with Carbon Nucleophiles... [Pg.38]


See other pages where Carbon nucleophiles alkenes is mentioned: [Pg.746]    [Pg.746]    [Pg.746]    [Pg.746]    [Pg.62]    [Pg.156]    [Pg.224]    [Pg.388]    [Pg.199]    [Pg.625]    [Pg.180]    [Pg.25]    [Pg.142]    [Pg.67]    [Pg.199]    [Pg.30]    [Pg.345]    [Pg.970]    [Pg.357]    [Pg.515]    [Pg.314]    [Pg.38]    [Pg.85]    [Pg.318]    [Pg.357]   
See also in sourсe #XX -- [ Pg.571 , Pg.572 , Pg.573 , Pg.574 , Pg.575 , Pg.576 , Pg.577 , Pg.578 , Pg.579 , Pg.580 , Pg.581 , Pg.582 ]

See also in sourсe #XX -- [ Pg.4 , Pg.571 , Pg.572 , Pg.573 , Pg.574 , Pg.575 , Pg.576 , Pg.577 , Pg.578 , Pg.579 , Pg.580 , Pg.581 , Pg.582 ]

See also in sourсe #XX -- [ Pg.4 , Pg.571 , Pg.572 , Pg.573 , Pg.574 , Pg.575 , Pg.576 , Pg.577 , Pg.578 , Pg.579 , Pg.580 , Pg.581 , Pg.582 ]




SEARCH



Alkene derivatives carbon nucleophile reactions

Carbon alkenes

Carbon nucleophile

Carbon nucleophiles

Nucleophiles alkenes

© 2024 chempedia.info