Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl enol ethers 3 + 2 cycloaddition reactions

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Lewis acid catalysis has been used to promote stepwise [2 + 2] cycloaddition of silyl enol ethers and unsaturated esters.178 The best catalyst is (C2H5)2A1C1 and polyfluoroalkyl esters give the highest stereoselectivity. The reactions give the more stable trans products. [Pg.542]

Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

The scope and efficiency of [4+2] cycloaddition reactions used for the synthesis of pyridines continue to improve. Recently, the collection of dienes participating in aza-Diels Alder reactions has expanded to include 3-phosphinyl-l-aza-l,3-butadienes, 3-azatrienes, and l,3-bis(trimethylsiloxy)buta-l, 3-dienes (1,3-bis silyl enol ethers), which form phosphorylated, vinyl-substituted, and 2-(arylsulfonyl)-4-hydroxypyridines, respectively <06T1095 06T7661 06S2551>. In addition, efforts to improve the synthetic efficiency have been notable, as illustrated with the use of microwave technology. As shown below, a synthesis of highly functionalized pyridine 14 from 3-siloxy-l-aza-1,3-butadiene 15 (conveniently prepared from p-keto oxime 16) and electron-deficient acetylenes utilizes microwave irradiation to reduce reaction times and improve yields <06T5454>. [Pg.316]

Cyclopropanation of l,3-dienes. a,0-Unsaturated carbenes can undergo [4 + 2]cycloaddition with 1,3-dienes (12, 134), but they can also transfer the carbene ligand to an isolated double bond to form cyclopropanes. Exclusive cyclopropanation of a 1,3-diene is observed in the reaction of the a,(3-unsaturated chromium carbene 1 with the diene 2, which results in a frans-divinylcyclopropane (3) and a seven-membered silyl enol ether (4), which can be formed from 3 by a Cope rearrangement. However, the tungsten carbene corresponding to 1 undergoes exclusive [4 + 2]cycIoaddition with the diene 2. [Pg.91]

Another important variant of the preceding approach is the cycloaddition reaction between monocarbonyl iodonium salt 47 and an alkene to give dihydrofuran 48 (88TL3703 89JOC2605). The iodonium salt 47 is generated by the oxidation of acetophenone silyl enol ether (46) with iodosobenzene in the presence of fluoboric acid. [Pg.18]

The reaction of vinylcarbenoids with vinyl ethers can lead to other types of [3 + 2] cycloadditions. The symmetric synthesis of 2,3-dihydrofurans is readily achieved by reaction of rhodium-stabilized vinylcarbenoids with vinyl ethers (Scheme 14.17) [107]. In this case, (J )-pantolactone is used as a chiral auxihary. The initial cyclopropanation proceeds with high asymmetric induction upon deprotection of the silyl enol ether 146, ring expansion occurs to furnish the dihydrofuran 147, with no significant epi-merization during the ring-expansion process. [Pg.325]

In another attempt, we reached the tetracyclic structure 42 via two consecutive [4 + 2] cycloaddition reactions. Reaction of 3-cyano-4-benzopyrone 31 with Danishefsky s diene 38 in toluene at 300 °C for 96 h provided the desired cycloadduct 39 in 80% yield with an endo exo ratio of 1 2 [Scheme 8]. Hydrolysis of the silyl enol ether in 39 using TMSBr in CH3CN at room temperature proved to be feasible but slow, and afforded the enone 40 in 90% yield. Reaction of diene 41 with enone 40 in the presence of 2.5 equiv of BF3-Et20 yielded tetracycle 42 in 25% yield with an endo exo ratio of 1 1 after 120 h at room temperature.49... [Pg.50]

Diels-Alder reaction with cyclopentadienes. An improved synthesis of a key intermediate (6) to gibberellic acid (7) begins with the cycloaddition of 1 to a 2 1 mixture of 2- and l-(2-bromoallyl)cyclopentadiene (2) to give the adduct 3 in which the acetyl group has the enr/o-orientation. The silyl enol ether of 3 when heated undergoes a Cope rearrangement to give a eis-hydrindene (4), which was converted... [Pg.510]

The DFT study of the 3 + 2-cycloaddition between ketene and TV-silyl-, IV-germyl-, and TV-stannyl-imines shows that the TV-germylimine reaction is a two-step process the TV-stannylimine reaction is a competition between two- and three-step processes whereas the TV-silyl process follows a three-step process44 A new and convenient synthesis of functionalized furans and benzofurans based on 3 + 2-cycloaddition/oxidation has been reported. The cyclization of cyclic 1,3-bis-silyl enol ethers (48) with l-chloro-2,2-dimethoxyethane (49), via a dianion, produced 5,6-bicyclic 2-alkylidenetetrahydrofurans (50), which are readily oxidized with DDQ to 2,3-unsubstituted benzofurans (51) (Scheme 13)45 The Evans bis(oxazoline)-Cu(II) complex catalyses the asymmetric 1,3-dipolar cycloaddition of a -hydroxyenones with nitrones to produce isoxazolidines.46 The... [Pg.357]

Diels-Alder reactionsBoth 1,4-dicyanonaphthalene (DCN) and 2,6,9,10-te-tracyanoanthracene (TCA) have been used as sensitizers to effect photochemical [4 + 2]cycloadditions of electron-rich dienes and electron-rich dienophiles, which do not normally undergo thermal cycloadditions. These cycloadditions are known as triplex Diels-Alder reactions because they are postulated to involve as an intermediate a three-membered complex of sensitizer, dienophile, and diene. This reaction is useful for synthesis of bicyclo[2.2.2]octenes from some silyl enol ethers, alkenes, or arylalkynes. [Pg.100]

No reaction occurs with vinyl ethers, silyl enol ethers, or ketene silyl acetals, usually used in thermal [2 + 2]cycloaddition reactions, but the present case is the first example of the preparation of a chiral cyclobutanone by a cycloaddition route. [Pg.315]

C(2)-C(3) fused polycyclic cephalosporins have received considerable attention as new candidates for /3-lactam antibiotics. An access to tricyclic cephalosporins based on metal-promoted alkenylation of 3-trifloxy-A3-cephem and subsequent Diels-Alder reaction has been published <1996TL5967>. Alternatively, the reaction of a cephalosporin triflate with silyl enol ethers and silylketene acetals has been described to afford tri- and tetracyclic cephalosporins <1996TL7549>. A related process is the formation of fused polycyclic cephalosporins 27 and 28 bearing a wide range of functionalities from the reaction of cephalosporin triflates 26 with unsaturated compounds (alkenes and alkynes) and a base (Scheme 5) <1997JOC4998>. These studies have suggested that the reaction proceeds via the intermediacy of a six-membered cyclic allene which undergoes concerted nZs + K2a cycloaddition with alkenes and acetylenes. [Pg.123]

One silicon tethered example that is unique in its selectivity is the cinnamyl tethered silyl enol ether shown in Sch. 17. Unlike all of the other silyl tethered examples, this compound gives a photoadduct that is the result of a cross 2+2. However, it is the product expected if the cycloaddition is a stepwise process involving radical intermediates. It is also the product expected if the reaction pathway is controlled by 7i-stacking. [Pg.151]

The reactions of silenes with aldehydes and ketones is another area whose synthetic aspects have been particularly well-studied4,6 7 10 12. The favoured reaction pathways for reaction are generally ene-addition (in the case of enolizable ketones and aldehydes) to yield silyl enol ethers and [2 + 2]-cycloaddition to yield 1,2-siloxetanes (equation 44), but other products can also arise in special cases. For example, the reaction of aryldisilane-derived (l-sila)hexatrienes (e.g. 21a-c) with acetone yields mixtures of 1,2-siloxetanes (51a-c) and ene-adducts (52a-c) in which the carbonyl compound rather than the silene has played the role of the enophile (equation 45)47,50 52 98 99. Also, [4 + 2]-cycloadducts are frequently obtained from reaction of silenes with a,/i-unsaturated- or aryl ketones, where the silene acts as a dienophile in a formal Diels-Alder reaction6 29,100-102. [Pg.980]

Figure 4-7 shows a typical hetero Diels-Alder reaction of a nitrosoalkene. Upon in situ generation of the heterodiene 4-34 from the oxime 4-33, cycloaddition occurred in the presence of the silyl enol ether 4-35 to give the 5,6-dihydro-4H- 1,2-oxazine 4-36 in excellent yield [366]. Such conversions are very suitable for achieving kinetic resolutions of -/Z-isomeric silyl enol ethers since the Z-isomers are distinctly less reactive towards 4-34 [367]. [Pg.68]

Scheme 1.19. Diastereoselective addition of a Danishefsky diene derivative (216) to (V,o- The product distribution is indicative of a stepwise reaction, because the major diastereoisomer (( )-217) obtained after hydrolysis of the silyl enol ether function of the primary adduct cannot result from a concerted [4 + 2] cycloaddition. Scheme 1.19. Diastereoselective addition of a Danishefsky diene derivative (216) to (V,o- The product distribution is indicative of a stepwise reaction, because the major diastereoisomer (( )-217) obtained after hydrolysis of the silyl enol ether function of the primary adduct cannot result from a concerted [4 + 2] cycloaddition.
Very few pericyclic reactions of carbene complexes have been studied that are not in the cycloaddition class. The two examples that are known involve ene reactions and Claisen rearrangements. Both of these reactions have been recently studied and thus future developments in this area are anticipated. Ene reactions have been observed in the the reactions of alkynyl carbene complexes and enol ethers, where a competition can exist with [2 + 2] cycloadditions. Ene products are the major components firom the reaction of silyl enol ethers and [2 + 2] cycloadducts are normally the exclusive products with alkyl enol ethers (Section 9.2.2.1). As indicated in equation (7), methyl cyclohexenyl ether gives the [2 -t- 2] adduct (84a) as the major product along with a minor amount of the ene product (83a). The t-butyldimethylsilyl enol ether of cyclohexanone gives the ene product 9 1 over the [2 + 2] cycloadduct. The reason for this effect of silicon is not known at this time but if the reaction is stepwise, this result is one that would be expected on the basis of the silicon-stabilizing effect on the P-oxonium ion. [Pg.1075]

Kobayashi et al. found that lanthanide triflates were excellent catalysts for activation of C-N double bonds —activation by other Lewis acids required more than stoichiometric amounts of the acids. Examples were aza Diels-Alder reactions, the Man-nich-type reaction of A-(a-aminoalkyl)benzotriazoles with silyl enol ethers, the 1,3-dipolar cycloaddition of nitrones to alkenes, the 1,2-cycloaddition of diazoesters to imines, and the nucleophilic addition reactions to imines [24], These reactions are efficiently catalyzed by Yb(OTf)3. The arylimines reacted with Danishefsky s diene to give the dihydropyridones (Eq. 14) [25,26], The arylimines acted as the azadienes when reacted with cyclopentadiene, vinyl ethers or vinyl thioethers, providing the tet-rahydroquinolines (Eq. 15). Silyl enol ethers derived from esters, ketones, and thio-esters reacted with N-(a-aminoalkyl)benzotriazoles to give the /5-amino carbonyl compounds (Eq. 16) [27]. The diastereoselectivity was independent of the geometry of the silyl enol ethers, and favored the anti products. Nitrones, prepared in situ from aldehydes and N-substituted hydroxylamines, added to alkenes to afford isoxazoli-dines (Eq. 17) [28]. Addition of diazoesters to imines afforded CK-aziridines as the major products (Eq. 18) [29]. In all the reactions the imines could be generated in situ and the three-component coupling reactions proceeded smoothly in one pot. [Pg.921]

The photochemical cycloaddition of a carbonyl, generally from an aldehyde or ketone, and an alkene is called the Patemd-Buchi reaction This [2 + 2]-cycloaddition gives an oxetane (213) and the reaction is believed to proceed via a diradical intermediate. Silyl enol ethers react with aldehydes under nonphoto-chemical conditions using ZnCl2 at 25°C or SnCl4 at —78°C. ... [Pg.1231]

Two homo Diels-Alder reactions and a hetero Diels-Alder reaction, each using a silyloxydiene, have been used in a total synthesis of vinemycinone methyl ester (236) by Danishefsky (84JA2453 85JA1285). Ketoaldehyde 231, prepared by two Diels-Alder cycloadditions, reacted with diene 230 in chloroform in the presence of Eu (fod)j to produce the silyl enol ether... [Pg.277]

Photocyclisation of 8-alkoxy-l,2,3,4-tetrahydro-l-naphthalenones and 4-alkoxy-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ones gives naphtho[l, 8-bc]furans and cyclohepta[cd]benzofurans respectively, and conformational and substituent effects of 1,5-biradicals in the cyclisation process are discussed." " The same authors also describe substituent effects on the photocyclisation of ethyl 2-(8-oxo-5,6,7,8-tetrahydro-l-naphthyloxy)acetates and ethyl 2-(5-oxo-6,7,8,9-tet-rahydro-5H-benzocyclohepten-4-yloxy)acetates to give naphtho[l,8-bc]furans and cyclohepta[c,d]benzofurans respectively." Also reported are cyclisations involving photogenerated radical cations of unsaturated silyl enol ethers, fragmentation cyclisations of unsaturated ot-cyclopropyl ketones which occur by photoelectron transfer and give polycyclics, and kinetic and theoretical studies of [2+3] cycloadditions of nitrile ylids. These reactions have been studied mechanistically and their synthetic potential investigated. [Pg.187]

With an acceptor-substituted alkene moiety tethered to the molecule, the intermediate silyl enol ether may undergo an intramolecular [2-I-2] cycloaddition.The silyl-assisted addition of hydrogen halides to cyclopropanes is not restricted to ketones with carbonyl groups as activating function or iodide as nucleophile. Esters and other acid derivatives underwent similar reactions when treated with iodotrimethylsilane alone or in the presence of an additional catalyst such as mercury(II) or zinc(II) chloride.Subsequent treatment of the y-iodo ester with potassium carbonate in tetrahydrofuran gave the respective y-butyrolactones in good yield. [Pg.2098]


See other pages where Silyl enol ethers 3 + 2 cycloaddition reactions is mentioned: [Pg.142]    [Pg.69]    [Pg.210]    [Pg.66]    [Pg.324]    [Pg.353]    [Pg.324]    [Pg.258]    [Pg.720]    [Pg.360]    [Pg.351]    [Pg.69]    [Pg.30]    [Pg.27]    [Pg.43]    [Pg.43]    [Pg.432]    [Pg.179]    [Pg.158]    [Pg.424]    [Pg.273]   
See also in sourсe #XX -- [ Pg.342 ]




SEARCH



Cycloaddition ether

Enol ethers cycloadditions

Enolates silylation

Enolates, silyl reactions

Silyl enol ethers

Silyl enol ethers reaction

Silyl enolate

Silyl enolates

Silyl ethers reactions

Silyl ethers, cycloaddition

Silylation reactions

© 2024 chempedia.info