Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon polytype

On silicon carbide, it is easier to see and measure step heights than in crystals like beryl, because SiC has polytypes, first discovered by the German crystallog-rapher Baumhauer (1912). The crystal structure is built up of a succession of close-packed layers of identical structure, but stacked on top of each other in alternative ways (Figure 3.24). The simplest kind of SiC simply repeats steps ABCABC, etc., and the step height corresponds to three layers only. Many other stacking sequences... [Pg.119]

Other stacking sequences than these are also possible, for example AaBpAaCy... or statistical sequences without periodic order. More than 70 stacking varieties are known for silicon carbide, and together they are called a-SiC. Structures that can be considered as stacking variants are called polytypes. We deal with them further in the context of closest-sphere packings (Chapter 14). [Pg.120]

The familiar diamond structure, with each atom covalently bonded in a perfect tetrahedral fashion to its four neighbors, is adopted not only by C but also by Si and Ge. Silicon can also adopt a wurtzite structure (see below), an example of a polytype (one of several crystal structures possible for a substance having an identical chemical composition but differing in the stacking of layers, and which may exist in a metastable state after its formation at some different temperature or pressure). [Pg.238]

When Acheson found the hexagonal crystals in the voids, he sent some to B.W. Frazier, a professor at Lehigh University. Professor Frazier found that although the crystals were all silicon carbide, they differed in their crystalline structure. He had discovered the polytypism of SiC [18]. Polytypism will be explained in Section 1.3.2. [Pg.6]

Silicon carbide exhibits a two-dimensional polymorphism called polytypism. All polytypes have a hexagonal frame of SiC bilayers. The hexagonal frame should be viewed as sheets of spheres of the same radius and the radii touching, as illustrated in Figure 1.5. The sheets are the same for all lattice planes. However, the relative position of the plane directly above or below are shifted somewhat to fit in the valleys of the adjacent sheet in a close-packed arrangement. Hence, there are two inequivalent positions for the adjacent sheets. [Pg.8]

Chung, G. Y., et al., Effect of Nitric Oxide Annealing on the Interface Trap Densities Near the Band Edges in the 4H Polytype of Silicon Carbide, Applied Physics Letters, Vol. 76, No. 13, March 27, 2000, p. 1713. [Pg.174]

The structure of presolar silicon carbide grains can provide information about the conditions of formation. Crystalline silicon carbide is known to form about 100 different polytypes, including cubic, hexagonal, and rhombohedral structures. Presolar silicon carbide exists in only two of these, a cubic (fi-SiC) polytype and a hexagonal (a-SiC) polytype (Daulton et al.,... [Pg.146]

Daulton, T. L., Bematowicz, T. J., Lewis, R. S. et al. (2003) Polytype distribution in circumstellar silicon carbide Microstructural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 4743-4767. [Pg.155]

The properties of silicon carbide (4—6) depend on purity, polytype, and method of formation. The measurements made on commercial, polycrystalline products should not be interpreted as being representative of single-crystal silicon carbide. The pressureless-sintered silicon carbides, being essentially single-phase, fine-grained, and polycrystalline, have properties distinct from both single crystals and direct-bonded silicon carbide refractories. Table 1 lists the properties of the fully compacted, high purity material. [Pg.463]

Crystal Structure. Silicon carbide may crystallize in the cubic, hexagonal, or rhombohedral structure. There is a broad temperature range where these structures may form. The hexagonal and rhombohedral structure designated as the a-form (noncubic) may crystallize in a large number of polytypes. [Pg.464]

A progressive etching technique (39,40), combined with x-ray diffraction analysis, revealed the presence of a number of a polytypes within a single crystal of silicon carbide. Work using lattice imaging techniques via transmission electron microscopy has shown that a-silicon carbide formed by transformation from the p-phase (cubic) can consist of a number of the a polytypes in a syntactic array (41). [Pg.464]

Semiconducting Properties. Silicon carbide is a semiconductor it has a conductivity between that of metals and insulators or dielectrics (4,13,46,47). Because of the thermal stability of its electronic structure, silicon carbide has been studied for uses at high (>500° C) temperature. The Hall mobility in silicon carbide is a function of polytype (48,49), temperature (41,42,45—50), impurity, and concentration (49). In n-type crystals, activation energy for ionization of nitrogen impurity varies with polytype (50,51). [Pg.465]

Silicon carbide whiskers typically have diameters of a few micrometers and lengths up to 5 cm. They may be composed of either P-SiC or CC-SiC, the latter in one or more polytypes, and occur mosdy as hair- or ribbonlike crystals. Despite many attempts to produce SiC whiskers on a large scale at low cost, they have never acquired a wide importance. SiC whiskers have been reviewed (111—120). [Pg.467]

The analysis of silicon carbide involves identification, chemical analysis, and physical testing. For identification, x-ray diffraction, optical microscopy, and electron microscopy are used (136). Refinement of x-ray data by Rietveld analysis allows more precise determination of polytype levels (137). [Pg.468]

Silicon carbide is covalently bonded with a structure similar to that of diamond. There are two basic structures. One is a cubic form, /i-SiC which transforms irreversibly at about 2000 °C to one of a large number of hexagonal polytypes, and the other is a rhombohedral form also with many polytypes. Both the hexagonal and rhombohedral forms are commonly referred to as a-SiC. [Pg.136]

The form that silicon carbide takes depends on many factors including thermal history, impurity type and level, and environment. The p form is generally felt to be the stable phase at low temperatures, whereas the a form is the high-temperature form. There are many exceptions to the rule, as the conversion to a from /3 and the converse have been reported. The stability and transformations of the various polytypes vary among themselves and constitute a subject that is too broad for this effort. The basic a and p descriptors will be used for the remainder of this section. [Pg.165]

From an optical viewpoint, on the other hand, the difference between semiconductors and insulators lies in the value of Eg. The admitted boundary is usually set at 3 eV (see Appendix A for the energy units) and materials with Eg below this value are categorized as semiconductors, but crystals considered as semiconductors like the wurtzite forms of silicon carbide and gallium nitride have band gaps larger than 3 eV, and this value is somewhat arbitrary. The translation into the electrical resistivity domain depends on the value of Eg, and also on the effective mass of the electrons and holes, and on their mobilities. The solution is not unique moreover, the boundary is not clearly defined. Semi-insulating silicon carbide 4H polytype samples with reported room temperature resistivities of the order of 1010flcm could constitute the... [Pg.1]

Apart from silicon carbide, another apparently simple material that displays polytypism is zinc sulphide, ZnS. Silicon carbide and zinc sulphide phases exist in hundreds of structural modifications, many of which have enormous repeat distances along one unit cell axis. Despite this complexity, the composition of these compounds never strays from that of the parent phase. [Pg.194]

Silicon carbide, carborundum, also crystallises in two forms, of which /(-SiC has the cubic zinc blende (sphalerite) structure (Figure 8.8a). When viewed along the cube face-diagonal [110] direction, the layers of both silicon and carbon are packed in the cubic closest packing arrangement. .. aAbBcCaAbBcC. .., where the uppercase and lowercase letters stand for layers of Si and C. The other form of silicon carbide, a-SiC, is a collective name for the various silicon carbide polytypes, which consist of complex arrangements of zinc blende and wurtzite slabs. Some of these are known by names such as carborundum I, carborundum II, carborundum III, and so on. One of the simplest structures is that of carbo-... [Pg.195]


See other pages where Silicon polytype is mentioned: [Pg.355]    [Pg.119]    [Pg.441]    [Pg.77]    [Pg.268]    [Pg.262]    [Pg.593]    [Pg.745]    [Pg.662]    [Pg.9]    [Pg.148]    [Pg.155]    [Pg.355]    [Pg.578]    [Pg.694]    [Pg.386]    [Pg.59]    [Pg.67]    [Pg.136]    [Pg.39]    [Pg.140]    [Pg.386]    [Pg.255]    [Pg.568]    [Pg.570]    [Pg.165]    [Pg.217]    [Pg.412]    [Pg.194]    [Pg.195]   
See also in sourсe #XX -- [ Pg.102 , Pg.108 , Pg.109 ]




SEARCH



Polytype

Polytype/polytypism

Polytypes

Polytypism

Silicon polytypism

© 2024 chempedia.info