Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica thin layer chromatography

After removal of solvent in vacuo, the yellow residue is chromatographed on silica thin layer chromatography (TLC) plates using hexane-CH2Cl2(85 15) as eluent. The major product, 2, is a nearly colorless band observed at Rf = 0.17. This band can be seen better by using an UV lamp and UV sensitized TLC plates (precoated TLC plates, silica gel 60 F-254, layer thickness 0.25 mm, Merck). This band is separated from the starting material (Rf = 0.47) and several minor bands and the products are eluted from the silica gel with CH2C12. An analytically pure sample can be obtained by recrystallization from hexane at - 20 °C. Yield 0.053-0.070 g (30-40%). [Pg.305]

Silica thin layer chromatography (TLC) sheets, store at room temperature. [Pg.547]

A concentrated DCM solution of photolytically degraded PBO was spotted onto a silica thin-layer chromatography (TLC) plate and chromatographed using 20% ethyl acetate in DCM. The most intense coloured band (red/pink close to the origin) was scraped from the plate and eluted from the silica with methanol. [Pg.84]

A similar approach has been used to identify insect feeding deterrents (Escoubas et al. 1992). Here, chemical separations of plant extracts are carried out on silica thin-layer chromatography plates. After the separation is complete and solvent is allowed to evaporate from the plates, a thin layer of agar-based artificial diet is poured over the plate. Chemical compounds from the plate then diffuse into the artificial diet. Test subjects then are allowed to feed on the diet-coated plates. Presumably, the areas that are not eaten contain antifeedants, which can later be identified chemically. [Pg.240]

A large number of variously 2-, 4-, and 5-substituted thiazoles with alkyl, aryl, hydroxy, methylthio, mercapto, halo, and nitro groups have been analyzed by thin-layer chromatography on silica and alumina by the Stahl s technique (167, 170, 172). Among the many systems recommended for the elution of these compounds are the following ... [Pg.362]

An important publication by Kost et al. (63JGU525) on thin-layer chromatography (TLC) of pyrazoles contains a large collection of Rf values for 1 1 mixtures of petroleum ether-chloroform or benzene-chloroform as eluents and alumina as stationary phase. 1,3- and 1,5-disubstituted pyrazoles can be separated and identified by TLC (Rf l,3>i y 1,5). For another publication by the same authors on the chromatographic separation of the aminopyrazoles, see (63JGU2519). A-Unsubstituted pyrazoles move with difficulty and it is necessary to add acetone or methanol to the eluent mixture. Other convenient conditions for AH pyrazoles utilize silica gel and ethyl acetate saturated with water (a pentacyanoamine ferroate ammonium disodium salt solution can be used to visualize the pyrazoles). [Pg.207]

Commercially available pre-coated plates with a variety of adsorbents are generally very good for quantitative work because they are of a standard quality. Plates of a standardised silica gel 60 (as medium porosity silica gel with a mean porosity of 6mm) released by Merck have a specific surface of 500 m /g and a specific pore volume of 0.75 mL/g. They are so efficient that they have been called high performance thin layer chromatography (HPTLC) plates (Ropphahn and Halpap J Chromatogr 112 81 1975). In another variant of thin layer chromatography the... [Pg.18]

Bismethylaminoanthraquinone (Disperse Blue 14) [2475-44-7] M 266.3, A,max 640 (594)nm. Purified by thin-layer chromatography on silica gel plates, using toluene/acetone (3.1) as eluent. The main band was scraped off and extracted with MeOH. The solvent was evapd and the dye was dried in a drying pistol [Land, McAlpine, Sinclair and Truscott J Chem Soc, Faraday Trans I 72 2091 7976]. [Pg.135]

The progress of the reaction was monitored hy injecting after each 24-hour period an aliquot into a gas chromatograph and checking the peak corresponding to isophorone. Alternatively, thin-layer chromatography (E. Merck 0.25-mm. silica gel plates developed with ethyl acetate) can be used,... [Pg.116]

The resulting product is purified by thin layer chromatography on silica gel in methylene dichloride yielding 8)S-di-5a-cholestane-3,6-dione (162) 13 mg, overall yield 26% mp 160-164°, which consists of 83% of dj-species. [Pg.191]

A mixture of 4.98 g of acetoacetic acid N-benzyl-N-methylaminoethyl ester, 2.3 g of aminocrotonic acid methyl ester, and 3 g of m-nitrobenzaldehyde was stirred for 6 hours at 100°C in an oil bath. The reaction mixture was subjected to a silica gel column chromatography (diameter 4 cm and height 25 cm) and then eluted with a 20 1 mixture of chloroform and acetone. The effluent containing the subject product was concentrated and checked by thin layer chromatography. The powdery product thus obtained was dissolved in acetone and after adjusting the solution with an ethanol solution saturated with hydrogen chloride to pH 1 -2, the solution was concentrated to provide 2 g of 2,6-dimethyl-4-(3 -nitrophenyl)-1,4-dihydropyridlne-3,5-dicarboxylic acid 3-methylester-5- -(N-benzyl-N-methylamino)ethyl ester hydrochloride. The product thus obtained was then crystallized from an acetone mixture, melting point 136°Cto 140°C (decomposed). [Pg.1070]

Reprecipitation from acetone/pentane is repeatedly effected until the condensation product suits in flaky form. Further purification is effected in that the crude product is chromatographed on silica gel. The fractions which are uniform in accordance with thin layer chromatography are combined and yield crystals from absolute alcohol. Pure 4 -demethylepipo-dophyllotoxin-/3-D-thenylidene glucoside has a melting point of 242°C to 246°C (last residue up to 255°C). [Pg.1445]

The moist cells were suspended in 750 parts of volume of ethanol and extracted by warming at 60°C for 1 hour. A total of 3 extractions were carried out in a similar manner and the extracts were pooled, diluted with water and further extracted three times with 1,000 parts of volume portions of n-hexane. The n-hexane layer was concentrated to dryness under reduced pressure to recover 4.12 parts of a yellow oil. This oily residue was dissolved in 6 parts by volume of benzene and passed through a column (500 parts by volume capacity) packed with Floridil (100 to 200 meshes). Elution was carried out using benzene and the eluate was collected in 10 parts by volume fractions. Each fraction was analyzed by thin-layer chromatography and color reaction and the fractions rich in ubiquinone-10 were pooled and concentrated under reduced pressure. By this procedure was obtained 0.562 part of a yellow oil. This product was dissolved in 5 parts by volume of chloroform, coated onto a thin layer plate of silica gel GF254 (silica gel with calcium sulfate) and developed with benzene. The fractions corresponding to ubiquinone-10 were extracted, whereby 0.054 part of a yellow oil was obtained. This oil was dissolved in 10 parts by volume of ethanol and allowed to cool, whereupon 0.029 part of yellow crystals of ubiquinone-10 were obtained, its melting point 4B°to 50°C. [Pg.1566]

Technique of thin-layer chromatography. Preparation of the plate. In thin-layer chromatography a variety of coating materials is available, but silica gel is most frequently used. A slurry of the adsorbent (silica gel, cellulose powder, etc.) is spread uniformly over the plate by means of one of the commercial forms of spreader, the recommended thickness of adsorbent layer being 150-250 m. After air-drying overnight, or oven-drying at 80-90 °C for about 30 minutes, it is ready for use. [Pg.230]

The bacteriochlorin 10 (65 mg, 0.11 mmol) was dissolved in coned H2S04 (18 mL) and allowed lo react at 20 C for 5 min. The mixture was poured into ice, diluted with H20 and NaOAc (7.5 g, 91 mmol) was added. The mixture was extracted several times with CHC13, the organic extractions were washed with H20 (2 x), dried (Na2S04) and evaporated. Preparative thin-layer chromatography (silica gel) gave 11 and 12 yields 10.7 mg (17%) and 44 mg (70%), respectively. [Pg.639]

The dinitrophenylhydrazones were separated from the reaction mixture by thin-layer chromatography (silica gel G developed with benzene) and further purified by thin-layer chromatography on aluminum oxide G (petroleum ether-diethyl ether (96 to 4), silica gel G (chloroform), and silica gel G (diethyl ether)). In all cases, the specific activities of the dinitrophenylhydrazones remained constant over the course of the last two purifications. [Pg.35]

Removal of solvent from the extracts leaves a residue that is purified by dry-column chromatography.2 The residue is dissolved in 40 ml. of acetone in a 300-ml., round-bottomed flask, 30 g. of silica gel (Note 8) is added, and the acetone is removed with a rotary evaporator. The resulting solid mixture is placed on top of 360 g. of dry silica gel (Note 8) packed in flexible nylon tubing (Note 9), and the column is developed with 420 ml. of 10 1 (vjv) benzene-acetone. Approximately 150 ml. of solvent drips from the bottom of the column toward the end of development, and this eluent is collected in 25-ml. fractions and checked for product by thin layer chromatography (Note 10). The column itself is then cut into 2-cm. sections, the silica gel in each section is eluted with three 25-ml. portions of ethyl acetate, and the eluent from each section is analyzed by thin-layer chromatography (Note 10). Combination of all the product-containing fractions yields 1.2-1.5g. (40-47%) of the benzylated compound as an oil, n 1.6083 (Notes 11 and 12). [Pg.79]

Fractions may be monitored by thin-layer chromatography on silica gel, developing with 10% v/v ethyl acetate in hexane and visualizing with iodine vapor. The following Rf values were observed famesol, 0.07 farnesyl acetate, 0.35 bromohydrin acetate, 0.20. [Pg.115]

A three-step nitration process of toluene is described. The advantages of the modified process are reduced waste, less hazardous operation, reduced oleum requirement, partial replacement of coned HN03 with dil HN03, and higher rate of toluene flow into the reactor (Ref 86) The continuous process of H.C. Prime (Ref 73) for preparing TNT was studied by thin-layer chromatography on silica gel with a starch binder and a fluorescent indicator. The nitration... [Pg.264]

Tezuka s group (Tezuka and Ando, 1985 Tezuka et al., 1986) was able to isolate and characterize the benzenediazo ether of 1-naphthol (6.10). They stirred a solid mixture of the molecular complex 6.9 formed between an a-azohydroperoxide acid and benzene with an excess of 1-naphthol at room temperature in the dark for several hours. The separation of this solid by thin layer chromatography (silica gel, with a benzene-ethyl acetate mixture [9 1] as eluent) afforded the diazo ether 6.10 as a yellow oil in 17 % yield, together with 4- and 2-phenylazo-l-naphthol (6.11 and 6.12, 4% and 42%, respectively), 4-phenylbenzaldehyde (32%), benzoic acid (23%), and traces of other compounds (Scheme 6-6). Higher yields of the diazo ether (up... [Pg.114]


See other pages where Silica thin layer chromatography is mentioned: [Pg.355]    [Pg.197]    [Pg.406]    [Pg.1948]    [Pg.305]    [Pg.355]    [Pg.197]    [Pg.406]    [Pg.1948]    [Pg.305]    [Pg.429]    [Pg.18]    [Pg.19]    [Pg.374]    [Pg.173]    [Pg.173]    [Pg.194]    [Pg.231]    [Pg.165]    [Pg.184]    [Pg.98]    [Pg.1026]    [Pg.1067]    [Pg.1234]    [Pg.142]    [Pg.558]    [Pg.13]    [Pg.229]    [Pg.36]    [Pg.116]    [Pg.119]    [Pg.37]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Silica gel in thin-layer chromatography

Silica layer

Silica layers, thin

TLC, thin layer chromatography silica gel

Thin layer chromatography silica gel

Thin-layer chromatography (TLC silica

Thin-layer chromatography on silica gel

© 2024 chempedia.info