Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica gels material properties

Logi values for the interaction of the silica gel-bound crown compounds with various cations have been determined [7]. A small amount of the silica gel material was placed in a chromatography column and the column was equilibrated with known concentrations of the cations studied. The cation binding properties of silica gel itself were determined by making blank measurements with plain silica gel. Binding of the cations of interest to the silica gel sites was made negligible by... [Pg.130]

Effective metal ion adsorbent has been prepai ed by the immobilization of propylthioethyleamine ligand onto the surface of silica gel (SN-SiO,).The effectiveness of this material to bind metal ions has been attributed to the complexation chemistry between the ligand and the metal. We are investigating properties of propylthioethyleamine grafted on the surface of silica and possibility of application of the obtained surface for preconcentration of heavy metals such as zinc, lead, cadmium, copper, etc. from water solutions. [Pg.274]

Adsorption is the property of certain extremely porous materials to hold vapors in the pores until the desiccant is either heated or exposed to a drier gas. The material is a solid at all times and operates alternately through drying and reactivation cycles with no change in composition. Adsorbing materials in principal use are activated Alumina and silica gel. Molecular sieves are also used. Atmospheric dew points of minus 1000°F are readily obtained using adsorption. [Pg.642]

Molecular hybrids between organic polymers and silica gel are expected to show many possibilities as new composite materials. First, the hybrids may show intermediate properties between plastics and glasses (ceramics). In addition, the composition of the hybrids can be widely varied. In other words, the hybrids can be used to modify the organic polymer materials or to modify the inorganic glassy materials. The hydrophilic modification as described before is a typical example. [Pg.28]

Nevertheless, silica gel is the material of choice for the production of the vast majority of LC stationary phases. Due to the reactive character of the hydroxyl groups on the surface of silica gel, various organic groups can be bonded to the surface using standard silicon chemistry. Consequently, the silica gel surface can be modified to encompass the complete range of interactive properties necessary for LC ranging from the highly polar to almost completely dispersive. [Pg.55]

To select the metal to be incorporated into the substrate porphyrin unit, the following basic properties of metalloporphyrins should be considered. The stability constant of MgPor is too small to achieve the usual oligomeric reactions and purification by silica gel chromatography. The starting material (Ru3(CO)i2) for Ru (CO)Por is expensive and the yield of the corresponding metalation reaction is low. Furthermore, the removal of rutheniirm is difficult, and it is likewise difficult to remove the template from the obtained ruthenium CPOs. Therefore, ZnPor is frequently used as a substrate in this template reaction, because of the low prices of zinc sources (zinc acetate and/or zinc chloride), the high yield in the metalation reaction, the sufficient chemical stability of the ZnPor under con-... [Pg.72]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

Chapter 3 through Chapter 8 deal with the basic aspects of the practical uses of PLC. Chapter 3 describes sorbent materials and precoated layers for normal or straight phase (adsorption) chromatography (silica gel and aluminum oxide 60) and partition chromatography (silica gel, aluminum oxide 150, and cellulose), and precoated layers for reversed-phase chromatography (RP-18 or C-18). Properties of the bulk sorbents and precoated layers, a survey of commercial products, and examples of substance classes that can be separated are given. [Pg.8]

Commercial silica gels are available with a wide range of properties. The characteristics of some common chromatographic packings are summarized in Table 4.3 (36). These data are taken mainly from the survey of Sander and Wise and are based on experimental determinations from a single batch of material. The... [Pg.678]

However, it has to be realized that biological templates remain inserted in the final nanoparticles and this is not acceptable for many applications. Nevertheless, some recent examples indicate that such biomimetic materials may be suitable for the design of biotechnological and medical devices [32]. For instance, it was shown that silica gels formed in the presence of p-R5 were excellent host matrices for enzyme encapsulation [33]. In parallel, biopolymer/silica hybrid macro-, micro- and nanocapsules were recently obtained via biomimetic routes and these exhibit promising properties for the design of drug delivery materials (see Section 3.1.1) [34,35],... [Pg.163]

Most of the more recent studies have concentrated on rhodium. An effective system for a gas-phase reaction was reported by Arai et al. (107). The catalyst support was silica gel, which was desirable for its high surface area properties (293 m3/g). This was covered with a polymer formed from styrene and divinylbenzene, either by emulsion (A) or by solution (B) polymerization. Each of these base materials was then functionalized by the reactions shown in Eq. (49). [Pg.48]

In general, the structure of sol gel materials evolves sequentially as the product of successive and/or simultaneous hydrolysis and condensation and their reverse reactions (esterification and depolymerization). Thus, in principle, by chemical control of the mechanisms and kinetics of these reactions, namely the catalytic conditions, it is possible to tailor the structure (and properties) of the gels over a wide range. For example, stable silica xerogels of tailored particle dimensions, pore morphology, density and porosity, from relatively... [Pg.27]

One component of the eluent should have properties similar to those of the analytes, and this solvent is diluted by another solvent to control the retention time. The basic idea can be understood from the chromatographic behaviour of phthalic acid esters and polycyclic aromatic hydrocarbons (PAH). This approach can be applied to the separation procedure for a variety of stationary phase materials, including silica gel, polystyrene gel, and ion-exchangers. [Pg.89]

The qualitative analysis of retention behaviour in liquid chromatography has now become possible. Quantitative retention-prediction is, however, still difficult the prediction of retention time and the optimization of separation conditions based on physicochemical properties have not yet been completely successful. One reason is the lack of an ideal stationary phase material. The stationary phase material has to be stable as part of an instrument, and this is very difficult to achieve in normal-phase liquid chromatography because the moisture in organic solvents ages the silica gel. [Pg.131]

The Tenax-silica gel combination trap utilizes the adsorptive properties of two materials to provide a trap that effectively adsorbs and desorbs a wide variety of organic compounds. The small amount of OV-1 on glass wool at the trap inlet (Figure 2) is to insure that all the Tenax adsorbent is within the heated zone and is efficiently heated to the desorption temperature. A metal fitting at the trap inlet could act as a heat sink and create a cool spot on the Tenax if this spacer is not used. [Pg.51]

Surface-initiated ATRP was applied not only on planer substrates but also on various kinds of flne particles. The latter systems will be reviewed separately in Sect. 5.1. Porous materials are also fascinating targets for chromatographic application making use of the unique structure and properties of high-density polymer brushes. Wirth et al. were the first to report the grafting of poly(acrylamide) (PAAm) on a porous silica gel [109,110]. [Pg.11]

The factors that control separation and dispersion are quite different. The relative separation of two solutes is solely dependent on the nature and magnitude of the Interactions between each solute and the two phases. Thus, the relative movement of each solute band would appear to be Independent of column dimensions or particle geometry and be determined only by the choice of the stationary phase and the mobile phase. However, there is a caveat to this statement. It assumes that any exclusion properties of the stationary phase are not included in the term particle geometry. The pore size of the packing material can control retention directly and exclusively, as in exclusion chromatography or, indirectly, by controlling the access of the solute to the stationary phase in normal and reverse phase chromatography. As all stationary phases based on silica gel exhibit some exclusion properties, the ideal situation where the selective retention of two solutes is solely controlled by phase interactions is rarely met in practice. If the molecular size of the solutes differ, then the exclusion properties of the silica gel will always play some part in solute retention. [Pg.4]

Gao B, An F, Tiu K. Studies on Chelating Adsorption Properties of Novel Composite Material Polyethyleneimine/silica Gel for Heavy-metal Ions. Applied Surface Science 2006 253 1946-1952. [Pg.144]

Material. The compounds whose film properties were investigated are listed in Table I. Benzene, methanol, 2-propanol, and hexane (Fisher certified reagent) were percolated through a combined Florisil-silica gel column to remove surface-active contaminants benzene was also tested for acidic contamination. [Pg.126]


See other pages where Silica gels material properties is mentioned: [Pg.144]    [Pg.305]    [Pg.513]    [Pg.2186]    [Pg.440]    [Pg.445]    [Pg.215]    [Pg.151]    [Pg.345]    [Pg.15]    [Pg.72]    [Pg.3]    [Pg.425]    [Pg.677]    [Pg.465]    [Pg.466]    [Pg.29]    [Pg.83]    [Pg.302]    [Pg.352]    [Pg.159]    [Pg.131]    [Pg.117]    [Pg.51]    [Pg.65]    [Pg.236]    [Pg.243]    [Pg.91]    [Pg.64]    [Pg.6]    [Pg.346]   
See also in sourсe #XX -- [ Pg.341 , Pg.342 ]




SEARCH



Gels properties

Silica materials

Silica, properties

© 2024 chempedia.info