Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shell process propylene oxide

The Reaction. Acrolein has been produced commercially since 1938. The first commercial processes were based on the vapor-phase condensation of acetaldehyde and formaldehyde (1). In the 1940s a series of catalyst developments based on cuprous oxide and cupric selenites led to a vapor-phase propylene oxidation route to acrolein (7,8). In 1959 Shell was the first to commercialize this propylene oxidation to acrolein process. These early propylene oxidation catalysts were capable of only low per pass propylene conversions (ca 15%) and therefore required significant recycle of unreacted propylene (9—11). [Pg.123]

As of this writing, the process has not been commercialized, but apparendy the alcohol can be separated from its propylene oxide coproduct process to maintain an economically competitive position. The formation of organic hydroperoxides is a concern, as it was in the Shell process. [Pg.477]

The hydroperoxide process involves oxidation of propjiene (qv) to propylene oxide by an organic hydroperoxide. An alcohol is produced as a coproduct. Two different hydroperoxides are used commercially that result in / fZ-butanol or 1-phenylethanol as the coproduct. The / fZ-butanol (TBA) has been used as a gasoline additive, dehydrated to isobutjiene, and used as feedstock to produce methyl tert-huty ether (MTBE), a gasoline additive. The 1-phenyl ethanol is dehydrated to styrene. ARCO Chemical has plants producing the TBA coproduct in the United States, Erance, and the Netherlands. Texaco has a TBA coproduct plant in the United States. Styrene coproduct plants are operated by ARCO Chemical in the United States and Japan, Shell in the Netherlands, Repsol in Spain, and Yukong in South Korea. [Pg.136]

Transition metal oxides or their combinations with metal oxides from the lower row 5 a elements were found to be effective catalysts for the oxidation of propene to acrolein. Examples of commercially used catalysts are supported CuO (used in the Shell process) and Bi203/Mo03 (used in the Sohio process). In both processes, the reaction is carried out at temperature and pressure ranges of 300-360°C and 1-2 atmospheres. In the Sohio process, a mixture of propylene, air, and steam is introduced to the reactor. The hot effluent is quenched to cool the product mixture and to remove the gases. Acrylic acid, a by-product from the oxidation reaction, is separated in a stripping tower where the acrolein-acetaldehyde mixture enters as an overhead stream. Acrolein is then separated from acetaldehyde in a solvent extraction tower. Finally, acrolein is distilled and the solvent recycled. [Pg.215]

SMPO [styrene monomer propylene oxide] A process for making propylene oxide by the catalytic epoxidation of propylene. The catalyst contains a compound of vanadium, tungsten, molybdenum, or titanium on a silica support. Developed by Shell and operated in The Netherlands since 1978. [Pg.248]

Olefin epoxidation is an important industrial domain. The general approach of SOMC in this large area was to understand better the elementary steps of this reaction catalyzed by silica-supported titanium complexes, to identify precisely reaction intermediates and to explain catalyst deachvahon and titanium lixiviation that take place in the industrial Shell SMPO (styrene monomer propylene oxide) process [73]. (=SiO) Ti(OCap)4 (OCap=OR, OSiRs, OR R = hydrocarbyl) supported on MCM-41 have been evaluated as catalysts for 1-octene epoxidation by tert-butyl hydroperoxide (TBHP). Initial activity, selechvity and chemical evolution have been followed. In all cases the major product is 1,2-epoxyoctane, the diol corresponding to hydrolysis never being detected. [Pg.113]

The activity of titanium based catalysts for the oxidation of organic compounds is well known. Wulff et al. in 1971 [1] patented for Shell Oil a process for the selective epoxidation of propylene with hydroperoxides like ethylbenzene hydroperoxide (EBH) or tertiary-butyl hydroperoxide (TBH) with the use of a catalyst made of Ti02 deposited on high surface area Si02. A Shell Oil plant for the production of 130,000 tons/y of propylene oxide at Moerdijk, Holland, is based on this technology. [Pg.343]

Acrolein and Acrylic Acid. Acrolein and acrylic acid are manufactured by the direct catalytic air oxidation of propylene. In a related process called ammoxida-tion, heterogeneous oxidation of propylene by oxygen in the presence of ammonia yields acrylonitrile (see Section 9.5.3). Similar catalysts based mainly on metal oxides of Mo and Sb are used in all three transformations. A wide array of single-phase systems such as bismuth molybdate or uranyl antimonate and multicomponent catalysts, such as iron oxide-antimony oxide or bismuth oxide-molybdenum oxide with other metal ions (Ce, Co, Ni), may be employed.939 The first commercial process to produce acrolein through the oxidation of propylene, however, was developed by Shell applying cuprous oxide on Si-C catalyst in the presence of I2 promoter. [Pg.510]

A most relevant case is that of propylene oxide which, as mentioned, is produced from propylene and EBHP on Ti02-Si02 catalyst by the Shell process. Another process, by ARCO, uses propylene and TBHP with homogeneous catalysts based on molybdenum compounds. Together the two processes account for the production of 1 million tons per year. [Pg.297]

Heterolytic liquid-phase oxidation processes are more recent than homolytic ones. The two major applications are the Wacker process for oxidation of ethylene to acetaldehyde by air, catalyzed by PdCl2-CuCl2 systems,98 and the Arco oxirane" or Shell process100 for epoxidation of propylene by f-butyl or ethylbenzene hydroperoxide catalyzed by molybdenum or titanium complexes. These heterolytic reactions require less drastic conditions than the homolytic ones... [Pg.327]

The selective epoxidation of alkenes by alkyl hydroperoxides in the presence of d° transition metals (equation 64), reported in 1965,234 has been widely applied in organic chemistry and has been developed into a commercial process for the manufacture of propylene oxide by Halcon (M = Mo)99 and by Shell (M = Ti/SiO2).10°... [Pg.342]

In the area of renewable materials, bulk oxypropylation of chitin and chitosan has been performed. Chitin and chitosan are abundant natural polymers obtained from shellfish, such as crab shell or shrimp shell. This solvent free reaction yields viscous polyols. Unfortunately, propylene oxide homopolymer is formed as a by-product but is easily separated. It should be noted that care was taken to minimize the risk involved in the use of toxic, flammable propylene oxide (the reagent in this process). [Pg.25]

This process was originally developed and commercialized by Oxirane (a joint venture company between ARCO Chemical, now Lyondell, and Halcon) and independently by Shell Petrochemical Company. At present, this is one of the main processes for the commercial manufacture of propylene oxide (the other is a variant of the same that starts with isobutane instead of ethylbenzene, and produces propylene oxide together with tert-butyl alcohol, isobutylene, and... [Pg.391]

Shell has coproduced propylene oxide (PO) and styrene using its proprietary styrene monomer propylene oxide (SMPO) process for three decades. Research, development, and plant trials have been performed on a continuous basis in order to improve its efficiency and cost competitiveness. We report here some of the key fundamental and technological learnings gathered over various parts of the process. [Pg.355]

Propylene oxide (PO) is a versatile chemical intermediate used in a wide range of industrial and commercial products. Current world production is over 6 million metric torts a year. While several processes exist, the Shell Chemicals companies have derived a strong competitive advantage by using and continually developing their proprietary styrene monomer propylene oxide (SMPO) technology, a process in which propylene and ethylbenzene (EB) are converted into PO and styrene monomer (SM), respectively. Worldwide, there are now five world-scale SMPO plants based on Shell technology, the most recent one started up in 2006 in China. [Pg.356]

The bottoms product from the isobutane separation is a mixture of tertiary butyl alcohol and tertiary butyl hydroperoxide. This mixture enters the epoxidation reactor where it reacts with propylene to form propylene oxide. The catalyst is either molybdenum based as in the process developed by Halcon and practiced by ARCO or TiOj on silica in the Shell process. [Pg.151]

Aerobic selective oxidation of alkylaromatics, including cumene (CU), ethylbenzene (EtB), and cyclohexylbenzene (CyB), to the corresponding hydroperoxides (CHPs) represents a key step for several large-scale productions, including the Hock process for the synthesis of phenol (see Chapter 2) [15] and the Shell styrene monomer/propylene oxide (SM/PO) process for the production of propylene oxide (PO) and styrene monomer (SM) [16]. [Pg.260]

PO has historically been produced by the chlorohydiin method or the organic peroxide method. While these processes generate large amounts of by-products (namely, calcium chloride) they also deliver coproducts such as teft-butanol, which may be used for the production of methyl tertiary-butyl ether (MTBE), or styrene. Key producers of PO are Sumitomo, Repsol, and Huntsman (275). Shell s SMPO (Propylene Oxide with... [Pg.65]

Methylphenylcarbinol is also an intermediate in the Halcon process, in which ethylbenzene is oxidized to a hydroperoxide at around 130 °C with air, then converted with propylene into propylene oxide and carbinol. The carbinol is subsequently dehydrated on a titanium catalyst at 180 to 280 °C to styrene. This process, first commercialized by Atlantic Richfield, has found large-scale application in a few isolated cases (e.g. Shell (Netherlands), Alcudia (Spain) and Nihon Oxirane (Japan)) it is only viable if there is sufficient demand for propylene oxide. [Pg.143]


See other pages where Shell process propylene oxide is mentioned: [Pg.94]    [Pg.300]    [Pg.30]    [Pg.426]    [Pg.258]    [Pg.336]    [Pg.41]    [Pg.42]    [Pg.94]    [Pg.94]    [Pg.333]    [Pg.374]    [Pg.20]    [Pg.94]    [Pg.94]    [Pg.6487]    [Pg.284]    [Pg.407]    [Pg.587]    [Pg.83]    [Pg.19]    [Pg.575]    [Pg.591]   
See also in sourсe #XX -- [ Pg.509 ]




SEARCH



Propylene oxide

Propylene oxide oxidation

Shell process

© 2024 chempedia.info