Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine, structure 3-sheet

Secondary Structure. The silkworm cocoon and spider dragline silks are characterized as an antiparaHel P-pleated sheet wherein the polymer chain axis is parallel to the fiber axis. Other silks are known to form a-hehcal (bees, wasps, ants) or cross- P-sheet (many insects) stmctures. The cross-P-sheets are characterized by a polymer chain axis perpendicular to the fiber axis and a higher serine content. Most silks assume a range of different secondary stmctures during processing from soluble protein in the glands to insoluble spun fibers. [Pg.77]

Figure 6.23 Schematic diagram illustrating the active site loop regions (red) in three forms of the serpins. (a) In the active form the loop protrudes from the main part of the molecuie poised to interact with the active site of a serine proteinase. The first few residues of the ioop form a short p strand inserted between ps and pis of sheet A. (h) As a result of inhibiting proteases, the serpin molecules are cleaved at the tip of the active site ioop region, in the cleaved form the N-terminal part of the loop inserts itself between p strands 5 and 15 and forms a long p strand (red) in the middie of the p sheet, (c) In the most stable form, the latent form, which is inactive, the N-terminai part of the ioop forms an inserted p strand as in the cleaved form and the remaining residues form a ioop at the other end of the p sheet. (Adapted from R.W. Carreii et ai., Structure 2 257-270, 1994.)... Figure 6.23 Schematic diagram illustrating the active site loop regions (red) in three forms of the serpins. (a) In the active form the loop protrudes from the main part of the molecuie poised to interact with the active site of a serine proteinase. The first few residues of the ioop form a short p strand inserted between ps and pis of sheet A. (h) As a result of inhibiting proteases, the serpin molecules are cleaved at the tip of the active site ioop region, in the cleaved form the N-terminal part of the loop inserts itself between p strands 5 and 15 and forms a long p strand (red) in the middie of the p sheet, (c) In the most stable form, the latent form, which is inactive, the N-terminai part of the ioop forms an inserted p strand as in the cleaved form and the remaining residues form a ioop at the other end of the p sheet. (Adapted from R.W. Carreii et ai., Structure 2 257-270, 1994.)...
Brazzein is another small sweet-tasting protein whose solution structure has been recently solved by NMR. Brazzein tastes 2000 times sweeter than sucrose on a weight basis and is exceptionally thermostable. As indicated by NMR, the structure of this 54 residue, single-chain polypeptide does not change between 32 and 82 °C and retains its sweetness after incubation at 98 °C for two hours.Brazzein contains one a-helix and three strands of antiparallel jd-sheet stabilized by four intramolecular disulphide bonds. It has been proposed that the disulphide bonds could be responsible for the thermostability of brazzein by forming a compact structure at the tertiary level.The structure of brazzein does not resemble that of the other two sweet proteins with known structures, monellin and thaumatin, whereas sequence alignment and structural prediction indicate that brazzein shares the fold of a newly identified family of serine proteinase inhibitors. [Pg.149]

Silk is produced from the spun threads from silkworms (the larvae of the moth Bombyx mori and related species). The main protein in silk, fibroin, consists of antiparallel pleated sheet structures arranged one on top of the other in numerous layers (1). Since the amino acid side chains in pleated sheets point either straight up or straight down (see p. 68), only compact side chains fit between the layers. In fact, more than 80% of fibroin consists of glycine, alanine, and serine, the three amino acids with the shortest side chains. A typical repetitive amino acid sequence is (Gly-Ala-Gly-Ala-Gly-Ser). The individual pleated sheet layers in fibroin are found to lie alternately 0.35 nm and 0.57 nm apart. In the first case, only glycine residues (R = H) are opposed to one another. The slightly greater distance of 0.57 nm results from repulsion forces between the side chains of alanine and serine residues (2). [Pg.70]

NMR and kinetic studies have been conducted with the hope of providing more details about the position and conformation of the polypeptide substrate in cAMP-dependent protein kinase. These have served to narrow down the possible spatial relationships between enzyme bound ATP and the phosphorylated serine. Thus, a picture of the active site that is consistent with the available data can be drawn (12,13,66,67). Although these studies have been largely successful at eliminating some classes of secondary polypeptide structure such as oi-hellces, 6-sheets or an obligatory 6-turn conformation 66), the precise conformation of the substrate is still not known. The data are consistent with a preference for certain 6-turn structures directly Involving the phosphorylated serine residue. However, they are also consistent with a preference or requirement for either a coil structure or some nonspecific type of secondary structure. Models of the ternary active-site complexes based on both the coil and the, turn conformations of one alternate peptide substrate have" been constructed (12). These two models are consistent with the available kinetic and NMR data. [Pg.198]

Lipases belong to the subclass of serine hydrolases, and their structure and reaction mechanism are well understood. Their common a/p-hydrolase enzyme fold is characterized by an a-helix that is connected with a sharp turn, referred to as the nucleophilic elbow, to the middle of a P-sheet array. All lipases possess an identical catalytic triad consisting of an Asp or Gin residue, a His and a nucleophilic Ser [14]. The latter residue is located at the nucleophilic elbow and is found in the middle of the highly conserved Gly—AAl—Ser—AA2—Gly sequence in which amino acids AAl and AA2 can vary. The His residue is spatially located at one side of the Ser residue, whereas at the opposite side of the Ser a negative charge can be stabilized in the so-called oxyanion hole by a series of hydrogen bond interactions. The catalytic mechanism of the class of a/P-hydrolases is briefly discussed below using CALB as a typical example, since this is the most commonly applied lipase in polymerization reactions [15]. [Pg.57]

In Nautilus, the CP has a ratio of GLY ALA SER = 3 2 1. This ratio is identical to that described for the -configuration of silk fibroin, where serine supplants alanine in the layer structure in concentrations up to 15 mole %229. In silk, polypeptide chains are arranged in a zig-zag configuration and so-called pleated sheets are generated (Fig. 26). [Pg.38]

The key role exercised by aspartic acid in MM is probably taken over by serine in the carrier protein. Conformation of the CP under ideal conditions involves only 0-pleated sheets but, depending on the primary structure, a-conformations will occur. The ratio of glycine alanine serine largely determines which types of cross- 3-struc-tures are developed. [Pg.58]

Although the amino acid sequences have no identity (except at the active serine), the two enzymes show a similar architectural framework consisting of a central five-stranded parallel /3-sheet structure. The catalytic groups are positioned on this /3-sheet structure in a strikingly similar way, though there are also some significant differences. [Pg.266]

Antithrombin is a member of the SERPIN superfamily of proteins, which includes the inhibitors a2 an1 Pbsniin, ar antichymotrypsin, and a -proteinase inhibitor (79). Antithrombin is considered to be the primary inhibitor of coagulation (80) and targets most coagulation proteases as well as the enzymes trypsin, plasmin, and kallikrein (81). Inhibition takes place when a stoichiometric complex between the active site serine of the protease and the ARG393-SER394 bond of antithrombin forms (82,83), The tertiary structure of antithrombin resembles a,-antitrypsin in that it is folded into N-terminal domain helices and (3-sheets. This tertiary structure is maintained by the formation of three disulfide bonds (71). Four glycosylation sites exist on human... [Pg.6]

The cereal dual function a-amylase/trypsin inhibitor proteins are cysteine-rich, disulphide-rich, double-headed, 13-16 kDa, dual function inhibitor proteins that inhibit both of the digestion enzymes a-amylase and trypsin [290-325] (Table 11). Thus the Zea (com) member of this family, com Hageman factor inhibitor (CHFI), is a double-headed 14 kDa protein that inhibits a-amylase and the serine proteases trypsin and blood clotting Factor Xlla [323-324] (Table 11). The structures of the bifunctional a-amylase/trypsin inhibitor proteins from Eleusine (ragi) (RBI) [292-295] and Zea (com) (CHFI) [325] have been determined. These proteins are structurally similar to the lipid transfer proteins, being composed of a bundle of 4 a-helices together with a short [3-sheet element connected by loops, the a-amylase- and protease-inhibitory domains being separately located [325]. [Pg.601]


See other pages where Serine, structure 3-sheet is mentioned: [Pg.1144]    [Pg.118]    [Pg.1144]    [Pg.181]    [Pg.194]    [Pg.968]    [Pg.99]    [Pg.18]    [Pg.19]    [Pg.297]    [Pg.69]    [Pg.95]    [Pg.359]    [Pg.142]    [Pg.106]    [Pg.304]    [Pg.255]    [Pg.273]    [Pg.71]    [Pg.262]    [Pg.701]    [Pg.210]    [Pg.309]    [Pg.309]    [Pg.255]    [Pg.274]    [Pg.1151]    [Pg.78]    [Pg.31]    [Pg.119]    [Pg.374]    [Pg.234]    [Pg.392]    [Pg.612]    [Pg.71]    [Pg.296]    [Pg.71]   


SEARCH



Serine structure

Sheet structures

© 2024 chempedia.info