Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fiber axis

Refractive Index. The refractive index parallel to the fiber axis (s) is 1.478 for acetate and 1.472 for triacetate. The index perpendicular to the axis (co) is 1.473 for acetate and 1.471 for triacetate. The birefringence, ie, the difference between S and CO, is very low for acetate fiber and practically undetectable for triacetate. [Pg.293]

The crystal stmcture of PPT is pseudo-orthorhombic (essentially monoclinic) with a = 0.785/nm b = 0.515/nm c (fiber axis) = 1.28/nm and d = 90°. The molecules are arranged in parallel hydrogen-bonded sheets. There are two chains in a unit cell and the theoretical crystal density is 1.48 g/cm. The observed fiber density is 1.45 g/cm. An interesting property of the dry jet-wet spun fibers is the lateral crystalline order. Based on electron microscopy studies of peeled sections of Kevlar-49, the supramolecular stmcture consists of radially oriented crystaUites. The fiber contains a pleated stmcture along the fiber axis, with a periodicity of 500—600 nm. [Pg.66]

Optical properties also provide useful stmcture information about the fiber. The orientation of the molecular chains of a fiber can be estimated from differences in the refractive indexes measured with the optical microscope, using light polarized in the parallel and perpendicular directions relative to the fiber axis (46,47). The difference of the principal refractive indexes is called the birefringence, which is illustrated with typical fiber examples as foUows. Birefringence is used to monitor the orientation of nylon filament in melt spinning (48). [Pg.249]

Secondary Structure. The silkworm cocoon and spider dragline silks are characterized as an antiparaHel P-pleated sheet wherein the polymer chain axis is parallel to the fiber axis. Other silks are known to form a-hehcal (bees, wasps, ants) or cross- P-sheet (many insects) stmctures. The cross-P-sheets are characterized by a polymer chain axis perpendicular to the fiber axis and a higher serine content. Most silks assume a range of different secondary stmctures during processing from soluble protein in the glands to insoluble spun fibers. [Pg.77]

Mechanical Properties. Although wool has a compHcated hierarchical stmcture (see Fig. 1), the mechanical properties of the fiber are largely understood in terms of a two-phase composite model (27—29). In these models, water-impenetrable crystalline regions (generally associated with the intermediate filaments) oriented parallel to the fiber axis are embedded in a water-sensitive matrix to form a semicrystalline biopolymer. The parallel arrangement of these filaments produces a fiber that is highly anisotropic. Whereas the longitudinal modulus of the fiber decreases by a factor of 3 from dry to wet, the torsional modulus, a measure of the matrix stiffness, decreases by a factor of 10 (30). [Pg.342]

An elegant NMR experiment by the group of Lynn Jelinski at Cornell University has established that at least part of the microcrystals is built up from the polyalanine repeats in the protein chains. These experiments, which were made on C-enriched proteins produced by feeding the spiders C-labeled alanine, showed that there were two populations of alanine side chains, one ordered and oriented perpendicular to the fiber axis and a second less ordered. Jelinski s interpretation is that parts of the polyalanine sequences are incorporated as p strands in the microcrystals with an orientation parallel to the fiber axis. Whether or not the Gly-Gly-X repeats also form P strands in the microcrystals remains an open question. [Pg.290]

Silk fibers, which have incredible strength, comprise well-ordered microcrystals of P-sheets that make up about 30% of the protein mass, interspersed in a matrix of polypeptide chains without order. The p strands of the sheets are oriented parallel to the fiber axis. [Pg.297]

VGCF 2.0 1950 parallel to fiber axis -20" perpendieular to fiber axis 60 parallel to fiber axis >100 perpendicular to fiber axis... [Pg.155]

Figure 2 The lamellar substructure of a fibril. (a) Reciprocal positions of crystalline lamellae as a result of fiber annealing. (b) The situation after relaxation of stress affecting TTM. ai.2 - average angle of orientation of TTM CL - crystalline lamellae CB - crystalline blocks (crystallites) mF -border of microfibrils and F - fibril. In order to simplify it was assumed that (1) there are the taut tie molecules (TTM) only in the separating layers, (2) the axis of the fibril is parallel to the fiber axis. Figure 2 The lamellar substructure of a fibril. (a) Reciprocal positions of crystalline lamellae as a result of fiber annealing. (b) The situation after relaxation of stress affecting TTM. ai.2 - average angle of orientation of TTM CL - crystalline lamellae CB - crystalline blocks (crystallites) mF -border of microfibrils and F - fibril. In order to simplify it was assumed that (1) there are the taut tie molecules (TTM) only in the separating layers, (2) the axis of the fibril is parallel to the fiber axis.
The development of the internal orientation in formation in the fiber of a specific directional system, arranged relative to the fiber axis, of structural elements takes place as a result of fiber stretching in the production process. The orientation system of structural elements being formed is characterized by a rotational symmetry of the spatial location of structural elements in relation to the fiber axis. Depending on the type of structural elements being taken into account, we can speak of crystalline, amorphous, or overall orientation. The first case has to do with the orientation of crystallites, the second—with the orientation of segments of molecules occurring in the noncrystalline material, and the third—with all kinds of structural constitutive elements. [Pg.844]

The parallelization of crystallites, occurring as a result of fiber drawing, which consists in assuming by crystallite axes-positions more or less mutually parallel, leads to the development of texture within the fiber. In the case of PET fibers, this is a specific texture, different from that of other kinds of chemical fibers. It is called axial-tilted texture. The occurrence of such a texture is proved by the displacement of x-ray reflexes of paratropic lattice planes in relation to the equator of the texture dif-fractogram and by the deviation from the rectilinear arrangement of oblique diffraction planes. With the preservation of the principle of rotational symmetry, the inclination of all the crystallites axes in relation to the fiber axis is a characteristic of such a type of texture. The angle formed by the axes of particular crystallites (the translation direction of space lattice [c]) and the... [Pg.845]

Fig. 20. Vickers indentations of oriented CEPE along the fiber axis for various loads showing the typical anisotropic impressions... Fig. 20. Vickers indentations of oriented CEPE along the fiber axis for various loads showing the typical anisotropic impressions...
The third category, shown in Fig. 2d, results when all of the long molecules or microcrystallites are aligned along the fiber axis, but they aggregate with little lateral ordering. This assembly, called an oriented fiber, diffracts to produce a series of layer lines that are perpendicular to the fiber axis. The intensity is nonuni-... [Pg.316]


See other pages where Fiber axis is mentioned: [Pg.265]    [Pg.269]    [Pg.326]    [Pg.202]    [Pg.342]    [Pg.147]    [Pg.147]    [Pg.250]    [Pg.255]    [Pg.77]    [Pg.340]    [Pg.439]    [Pg.432]    [Pg.347]    [Pg.6]    [Pg.241]    [Pg.312]    [Pg.358]    [Pg.182]    [Pg.288]    [Pg.296]    [Pg.297]    [Pg.12]    [Pg.123]    [Pg.402]    [Pg.403]    [Pg.403]    [Pg.3]    [Pg.829]    [Pg.845]    [Pg.851]    [Pg.856]    [Pg.161]    [Pg.140]    [Pg.44]    [Pg.318]    [Pg.321]    [Pg.330]   
See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.296 ]

See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.158 , Pg.173 ]




SEARCH



Fiber axis, periodicity along

© 2024 chempedia.info