Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation benzaldehyde

Dissolve 0 3 ml. of glacial acetic acid in 2 ml. of water in a 25 ml. conical flask, and add 0 4 ml. (0 44 g.) of phenylhydrazine. Mix thoroughly to obtain a clear solution of phenylhydrazine acetate and then add 0 2 ml. (0 21 g.) of benzaldehyde. Cork the flask securely and shake the contents vigorously. A yellow crystalline mass of the hydrazone soon begins to separate. Allow to stand for 15 minutes, with occasional shaking, and then filter the solid product at the pump, wash first with very dilute acetic acid and then with water, and finally drain thoroughly. Recrystallise the material from rectified or methylated spirit, the benzaldehyde phenylhydrazone being thus obtained in fine colourless needles, m.p. 157 yield, 0 4 g. [Pg.229]

Dissolve I ml. of benzaldehyde and 0-4 ml. of pure acetone in 10 ml. of methylated spirit contained in a conical flask or widemouthed bottle of about 50 ml. capacity. Dilute 2 ml. of 10% aqueous sodium hydroxide solution with 8 ml. of water, and add this dilute alkali solution to the former solution. Shake the mixture vigorously in the securely corked flask for about 10 minutes (releasing the pressure from time to time if necessary) and then allow to stand for 30 minutes, with occasional shaking finally cool in ice-water for a few minutes. During the shaking, the dibenzal -acetone separates at first as a fine emulsion which then rapidly forms pale yellow crystals. Filter at the pump, wash well with water to eliminate traces of alkali, and then drain thoroughly. Recrystallise from hot methylated or rectified spirit. The dibenzal-acetone is obtained as pale yellow crystals, m.p. 112 yield, o 6 g. [Pg.231]

Add 5 g. of powdered potassium cyanide to a mixture of 20 ml. of water and 50 ml. of ethanol contained in a 200 ml. conical flask, and then add 25 mi. (26 g.) of freshly distilled benzaldehyde. Fit the flask with a reflux water-condenser, and boil the mixture gently on a water-bath for 30 minutes, a clear solution being rapidly obtained. Then pour the solution into a beaker and cool the benzoin separates as a crystalline mass... [Pg.233]

A 1500 ml. flask is fitted (preferably by means of a three-necked adaptor) with a rubber-sleeved or mercury-sealed stirrer (Fig. 20, p. 39), a reflux water-condenser, and a dropping-funnel cf. Fig. 23(c), p. 45, in which only a two-necked adaptor is shown or Fig. 23(G)). The dried zinc powder (20 g.) is placed in the flask, and a solution of 28 ml. of ethyl bromoacetate and 32 ml. of benzaldehyde in 40 ml. of dry benzene containing 5 ml. of dry ether is placed in the dropping-funnel. Approximately 10 ml. of this solution is run on to the zinc powder, and the mixture allowed to remain unstirred until (usually within a few minutes) a vigorous reaction occurs. (If no reaction occurs, warm the mixture on the water-bath until the reaction starts.) The stirrer is now started, and the rest of the solution allowed to run in drop-wise over a period of about 30 minutes so that the initial reaction is steadily maintained. The flask is then heated on a water-bath for 30 minutes with continuous stirring, and is then cooled in an ice-water bath. The well-stirred product is then hydrolysed by the addition of 120 ml. of 10% sulphuric acid. The mixture is transferred to a separating-funnel, the lower aqueous layer discarded, and the upper benzene layer then... [Pg.287]

Bisulphite addition compound. Shake 1 ml. of benzaldehyde with about 0 5 ml. of saturated NaHSOj solution. The mixture becomes warm, and the white addition product separates (rapidly on cooling). [Pg.343]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

In a 250 ml. conical flask mix a solution of 14 g. of sodium hydroxide in 40 ml. of water and 21 g. (20 ml.) of pure benzaldehyde (Section IV,115). Add 15 g. of hydroxylamine hydrochloride in small portions, and shake the mixture continually (mechanical stirring may be employed with advantage). Some heat is developed and the benzaldehyde eventually disappears. Upon coohiig, a crystalline mass of the sodium derivative separates out. Add sufficient water to form a clear solution, and pass carbon dioxide into the solution until saturated. A colourless emulsion of the a or syn-aldoxime separates. Extract the oxime with ether, dry the extract over anhydrous magnesium or sodium sulphate, and remove the ether on a water bath. Distil the residue under diminished pressure (Fig. 11,20, 1). Collect the pure syn-benzaldoxime (a-benzald-oxime) at 122-124°/12 mm. this gradually solidifies on cooling in ice and melts at 35°. The yield is 12 g. [Pg.719]

It is important to mix the mandelonitrile with hydrochloric acid immediately it has been separated from the water. Standing results in rapid conversion to the acetal of benzaldehyde and mandelonitrile C(H,CH[OCH(CN)C H,] and/or the iso-nitrile the yield of mandelic acid will, in consequence, be reduced. [Pg.774]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

A suspension of 3.90 g (19.6 mmol) of p-(bromomethyl)benzaldehyde (2.8) and 4.00 g (31.7 mmol) of sodium sulfite in 40 ml of water was refluxed for two hours, after which a clear solution was obtained. The reaction mixture was cooled on an ice bath resulting in precipitation of some sodium sulfite. After filtration, the solvent was evaporated. Ethanol was added to the remaining solid and the suspension was refluxed for 10 minutes. After filtering the hot solution, the filtrate was allowed to cool down slowly to -18 °C whereupon sodium (p-oxomethylphenyl)methylsulfonate (2.9) separated as colourless crystals. The extraction procedure was repeated two more times, affording 2.29 g (10.3 mmol, 53%) of the desired product. H-NMR (200 MH D2O) 5(ppm) =4.10 (s,2H) 7.44 (d,2H) 7,76 (d,2H) 9.75 (s,lH). [Pg.65]

A few cyanohydrins and ethers of cyanohydrins occur naturally One species of millipede stores benzaldehyde cyanohydrin along with an enzyme that catalyzes its cleavage to benzaldehyde and hydrogen cyanide m separate compartments above its legs When attacked the insect ejects a mixture of the cyanohydrin and the enzyme repelling the invader by spraying it with hydrogen cyanide... [Pg.720]

Two gas chromatograms showing the effect of polarity of the stationary phase on the separation efficiency for three substances of increasing polarity toluene, pyridine, and benzaldehyde. (a) Separation on silicone SE-30, a nonpolar phase, and (b) separation on elastomer OV-351, a more polar phase. Note the greatly changed absolute and relative retention times the more polar pyridine and benzaldehyde are affected most by the move to a more polar stationary phase. [Pg.249]

Syntheses of members of the lobeline group have been effected by Wieland and Drishaus and by Seheuing and Winterhalder. JiorLobelane was prepared by the former authors by condensing 2 6-dimethylpyridine with benzaldehyde to 2 6-distyrylpyridine (IX), which was then reduced by sodium in alcohol, giving a mixture of meso-and trans- forms of 2 6-di-(3-phenylethylpiperidine (worlobelane). From this by crystallisation of the mixed hydrochlorides, meso-norlobelane was separated, which on A-methylation yielded lobelane (X) as the methiodide. [Pg.25]

The mixture of benzaldehyde, potassium cyanide and alcohol is heated on the water-bath with an upright condenser for about half an hour. On cooling the liquid, the benzoin separates out as a mass of small colourless crystals, which are filtered and u ashed with a little alcohol. Yield, about 20 grams. A portion of the substance may be purified by recrystalhsation from spirit. [Pg.202]

In a separate report, preparation of the lithium enolate of 31 in the presence of indium trichloride and benzaldehyde provided a 77% yield of 32 with complete trans selectivity however, sequential addition of indium trichloride and benzaldehyde provided Barbier-type products. Organotin enolates have also been used in a Darzens-type... [Pg.18]

In a separate report, the Darzens reaction was recently used by Barluenga, Concellon, and coworkers for the preparation of enantiopure a"-amino a,P-epoxy ketones. Accordingly, the Z enolate of a"-amino a-bromo ketone 41 was generated with KHMDS at -100°C. Benzaldehyde was added, and trans epoxyketone 42 was isolated in 87% yield and >95% de. ... [Pg.19]

Procedure The sodium hydroxide is dissolved in 200 ml water and the benzaldehyde is added. With continued stirring the hydroxylamine hydrochloride is added in portions. Some heat is developed and eventually the benzaldehyde dissolves. The solution is stirred for 15 minutes and then cooled in an ice-bath. A waxy, crystalline mass separates, and after further cooling it is collected by suction and dried in air. Yield is B6 to 149 grams. This crude material is suitable for step (B). [Pg.1120]

Davis and co-workers have carried out the first examples of the Knoevenagel condensation and Robinson annulation reactions [61] in the ionic liquid [HMIM][PFg] (HMIM = l-hexyl-3-methylimidazolium) (Scheme 5.1-33). The Knoevenagel condensation involved the treatment of propane-1,3-dinitrile with a base (glycine) to generate an anion. This anion added to benzaldehyde and, after loss of a water molecule, gave l,l-dicyano-2-phenylethene. The product was separated from the ionic liquid by extraction with toluene. [Pg.189]

In a 500-cc. three-neck, round-bottom flask provided with a mechanical stirrer is placed 106 g. (1 mole) of benzaldehyde (Note 1), and 93 g. (r mole) of aniline is added with rapid stirring. After a few seconds a reaction occurs with evolution of heat and separation of water. The mixture is allowed to stand fifteen minutes and is then poured, with vigorous stirring, into 165 cc. of 95 per cent alcohol in a 600-cc. beaker. Crystallization begins in about five minutes, and the mixture is allowed to stand, first ten minutes at room temperature, and then thirty minutes in ice water. The almost solid mass is next transferred to a large Buchner funnel, filtered by suction, pressed out, and air dried. The yield of pure benzalaniline melting at 520 is 152-158 g. (84-87 per cent of the theoretical amount). [Pg.22]

A very simple and elegant alternative to the use of ion-exchange columns or extraction to separate the mixture of D-amino add amide and the L-amino add has been elaborated. Addition of one equivalent of benzaldehyde (with respect to die D-amino add amide) to the enzymic hydrolysate results in the formation of a Schiff base with die D-amino add amide, which is insoluble in water and, therefore, can be easily separated. Add hydrolysis (H2SQ4, HX, HNO3, etc.) results in the formation of die D-amino add (without racemizadon). Alternatively the D-amino add amide can be hydrolysed by cell-preparations of Rhodococcus erythropolis. This biocatalyst lacks stereoselectivity. This option is very useful for amino adds which are highly soluble in die neutralised reaction mixture obtained after acid hydrolysis of the amide. [Pg.279]

In a flame-dried Schlenk tube 0.37 g(1.88 mmol) of (-)-3-exo-(dimethylamino)isoborneol (C) and 200 mL of dry toluene are placed under an atmosphere of argon. 27 mL of 4.2 M diethylzinc (113 mmol) in toluene are added and the resulting solution is stirred at 15°C for 15 min. After cooling to — 78°C, lOg (94.2 mmol) of benzaldehyde are added and the mixture is wanned to O C. After stirring for 6 h, the reaction is quenched by the addition of sat. NH4C1 soln. Extractive workup is followed by distillation yield 12.4 g (97%) 98% ee [determined by HPLC analysis. Baseline separation of rac-1 -phenyl-1 -propanol was achieved on a Bakerbond dinitrobenzoyl phenylglycine column (eluent 2-propanol/hexanc 1 3 flow rate l.OmL/ min detection UV 254 nm)] [a] 0 —47 (c = 6.11, CHC13). [Pg.166]


See other pages where Separation benzaldehyde is mentioned: [Pg.232]    [Pg.237]    [Pg.398]    [Pg.712]    [Pg.714]    [Pg.717]    [Pg.718]    [Pg.774]    [Pg.64]    [Pg.95]    [Pg.16]    [Pg.155]    [Pg.127]    [Pg.364]    [Pg.490]    [Pg.196]    [Pg.197]    [Pg.75]    [Pg.20]    [Pg.190]    [Pg.191]    [Pg.343]    [Pg.153]    [Pg.149]    [Pg.293]    [Pg.380]    [Pg.4]    [Pg.91]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



© 2024 chempedia.info