Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation alkaline earth metals

The redefinition of the comers in Fig. 1(c) separate alkaline earth metals from alkali metals. It can be seen that with this definition the material appears more disperse. It can also be seen that alkali metals are more predominant than alkaline earth metals. There is also small distribution maximum (maximum 1) near to the vertex between the Al+Si% and Ca+Mg% comers. When Al, Na, and Mg are omitted from the definition, this maximum shifts towards the vertex between Si% and Ca% comers [see Fig. 1(d)]. The direction of the shift indicates that the material contains sodium in this region. [Pg.674]

In most cases transmetalation in donor solvents (e.g., ethers) leads to solvent-separated alkaline-earth metal metallates with organyl-enriched metalate anions... [Pg.45]

Reduction to Gaseous Metal. Volatile metals can be reduced and easily and completely separated from the residue before being condensed to a hquid or a soHd product in a container physically separated from the reduction reactor. Reduction to gaseous metal is possible for 2inc, mercury, cadmium, and the alkah and aLkaline-earth metals, but industrial practice is significant only for 2inc, mercury, magnesium, and calcium. [Pg.168]

Lewis acids, such as the haUde salts of the alkaline-earth metals, Cu(I), Cu(II), 2inc, Fe(III), aluminum, etc, are effective catalysts for this reaction (63). The ammonolysis of polyamides obtained from post-consumer waste has been used to cleave the polymer chain as the first step in a recycle process in which mixtures of nylon-6,6 and nylon-6 can be reconverted to diamine (64). The advantage of this approach Hes in the fact that both the adipamide [628-94-4] and 6-aminohexanoamide can be converted to hexarnethylenediarnine via their respective nitriles in a conventional two-step process in the presence of the diamine formed in the original ammonolysis reaction, thus avoiding a difficult and cosdy separation process. In addition, the mixture of nylon-6,6 and nylon-6 appears to react faster than does either polyamide alone. [Pg.225]

The properties of hydrated titanium dioxide as an ion-exchange (qv) medium have been widely studied (51—55). Separations include those of alkaH and alkaline-earth metals, zinc, copper, cobalt, cesium, strontium, and barium. The use of hydrated titanium dioxide to separate uranium from seawater and also for the treatment of radioactive wastes from nuclear-reactor installations has been proposed (56). [Pg.120]

Zirconium tetrachloride forms hexachlorozirconates with alkab-metal chlorides, eg, Li ZrCl [18346-96-8] Na2ZrClg [18346-98-0] K ZrCl [18346-99-1y, Rb2ZrClg [19381 -65-8] and Cs2ZrClg, and with alkaline-earth metal chlorides SrZrCh [21210-13-9] and BaZrCl [21210-12-8]. The vapor pressure of ZrCl over these melts as a function of the respective alkah chlorides and of ZrCl concentration were studied as potential electrolytes for the electrowinning of zirconium (72). The zirconium tetrachloride vapor pressure increased in the following sequence Cs < Rb < K < Na < Li. The stabiUty of a hexachlorohafnate is greater than that of a comparable hexachlorozirconate (171), and this has been proposed as a separation method (172). [Pg.436]

Alkaline-earth metals are often deterruined volumetricaHy by complexometric titration at pH 10, using Eriochrome Black T as indicator. The most suitable complexing titrant for barium ion is a solution of diethylenetriaminepentaacetic acid (DTPA). Other alkaline earths, if present, are simultaneously titrated, and in the favored analytical procedure calcium and strontium are deterruined separately by atomic absorption spectrophotometry, and their values subtracted from the total to obtain the barium value. [Pg.484]

The proportion of hydrochloric acid in the mobile phase was not to exceed 20%, so that complex formation did not occur and zone structure was not adversely affected. An excess of accompanying alkaline earth metal ions did not interfere with the separation but alkali metal cations did. The hthium cation fluoresced blue and lay at the same height as the magnesium cation, ammonium ions interfered with the calcium zone. [Pg.312]

The person whose name is most closely associated with the periodic table is Dmitri Mendeleev (1836-1907), a Russian chemist. In writing a textbook of general chemistry, Mendeleev devoted separate chapters to families of elements with similar properties, including the alkali metals, the alkaline earth metals, and the halogens. Reflecting on the properties of these and other elements, he proposed in 1869 a primitive version of today s periodic table. Mendeleev shrewdly left empty spaces in his table for new elements yet to be discovered. Indeed, he predicted detailed properties for three such elements (scandium, gallium, and germanium). By 1886 all of these elements had been discovered and found to have properties very similar to those he had predicted. [Pg.33]

A mercury cathode finds widespread application for separations by constant current electrolysis. The most important use is the separation of the alkali and alkaline-earth metals, Al, Be, Mg, Ta, V, Zr, W, U, and the lanthanides from such elements as Fe, Cr, Ni, Co, Zn, Mo, Cd, Cu, Sn, Bi, Ag, Ge, Pd, Pt, Au, Rh, Ir, and Tl, which can, under suitable conditions, be deposited on a mercury cathode. The method is therefore of particular value for the determination of Al, etc., in steels and alloys it is also applied in the separation of iron from such elements as titanium, vanadium, and uranium. In an uncontrolled constant-current electrolysis in an acid medium the cathode potential is limited by the potential at which hydrogen ion is reduced the overpotential of hydrogen on mercury is high (about 0.8 volt), and consequently more metals are deposited from an acid solution at a mercury cathode than with a platinum cathode.10... [Pg.513]

In many instances electrogravimetry must be preceded by a separation between metals suitably this can be an electroseparation by means of constant-current electrolysis as previously described, but more attractively an electroseparation by means of controlled-potential electrolysis at a mercury pool or sometimes at an amalgamated Pt or brass gauze electrode. In this way one can either concentrate the metal of interest on the Hg or remove other metals from the solution alternatively, it can be a rougher separation, i.e., the concentration of a group of metals such as Fe, Ni, Co, Cu, Zn and Cd on the Hg whilst other metals such as alkali and alkaline earth metals, Be, Al, Ti and Zr remain in solution151. In all these procedures specific separation effects can be... [Pg.231]

Systems of the above type incorporating larger rings form binuclear complexes with a number of alkali and alkaline earth metal ions as well as with ions such as Ag(i) and Pb(n). For example, (212) forms a symmetrical dinuclear Na+ species in which the Na+ ions are associated with the respective azacrown and crown cavities and are separated from each other by 6.40 A in the solid (Fisher, Mellinger Weiss, 1977). [Pg.126]

Mori M, Yamamoto T, Itoh H, and Watanabe T. Compatibility of alkaline earth metal (Mg,Ca,Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. J. Mater. Sci. 1997 32 2423-2431. [Pg.204]

Up till now anionic mercury clusters have only existed as clearly separable structural units in alloys obtained by highly exothermic reactions between electropositive metals (preferably alkali and alkaline earth metals) and mercury. There is, however, weak evidence that some of the clusters might exist as intermediate species in liquid ammonia [13]. Cationic mercury clusters on the other hand are exclusively synthesized and crystallized by solvent reactions. Figure 2.4-2 gives an overview of the shapes of small monomeric and oligomeric anionic mercury clusters found in alkali and alkaline earth amalgams in comparison with a selection of cationic clusters. For isolated single mercury anions and extended network structures of mercury see Section 2.4.2.4. [Pg.173]

Reference has been made already to the existence of a set of inner transition elements, following lanthanum, in which the quantum level being filled is neither the outer quantum level nor the penultimate level, but the next inner. These elements, together with yttrium (a transition metal), were called the rare earths , since they occurred in uncommon mixtures of what were believed to be earths or oxides. With the recognition of their special structure, the elements from lanthanum to lutetium were re-named the lanthanons or lanthanides. They resemble one another very closely, so much so that their separation presented a major problem, since all their compounds are very much alike. They exhibit oxidation state + 3 and show in this slate predominantly ionic characteristics—the ions. LJ+ (L = lanthanide), are indeed similar to the ions of the alkaline earth metals, except that they are tripositive, not dipositive. [Pg.441]

Kit for the separation of low-molecular mass organic cations like alkali metal ions, alkaline earth metal ions, and alkyl amines. Indirect UV detection is applied. [Pg.99]

FIGURE 14.2 Separation of ammonium, alkali, and alkaline earth metals on lonPac CSl. Detection suppressed conductivity. Eluent (a) 5mM HCl (b) 2mM HCl, 2mM m-phenylenediamine dihydrochloride. [Pg.389]

FIGURE 14.3 Isocratic separation of morpholine, alkali, and alkaline earth metals on lonPac CS12A column. Eluent lOmM sulfuric acid. Detection suppressed conductivity. Peaks 1, lithium (0.5mg/L) 2, sodium (2mg/L) 3, ammonium (2.5mg/L) 4, potassium (5mg/L) 5, morpholine (25mg/L) 6, magnesium (2.5mg/L) 7, calcium (5mg/L). (From Rey, M.A. and Pohl, C.A., J. Chromatogr. A, 739, 87, 1996. Copyright 1996. With permission from Elsevier.)... [Pg.390]

The selective cation binding properties ol crown ethers and cryptands have obvious commercial applications in the separation of metal ions and these have recently been reviewed (B-78MI52103.79MI52102, B-81MI52103). Many liquid-liquid extraction systems have been developed for alkali and alkaline earth metal separations. Since the hardness of the counterion is inversely proportional to the extraction coefficient, large, soft anions, such as picrate, are usually used. [Pg.759]


See other pages where Separation alkaline earth metals is mentioned: [Pg.198]    [Pg.75]    [Pg.51]    [Pg.327]    [Pg.441]    [Pg.759]    [Pg.377]    [Pg.378]    [Pg.290]    [Pg.112]    [Pg.524]    [Pg.182]    [Pg.245]    [Pg.170]    [Pg.504]    [Pg.312]    [Pg.389]    [Pg.391]    [Pg.393]    [Pg.402]    [Pg.405]    [Pg.405]    [Pg.408]    [Pg.645]    [Pg.107]    [Pg.194]    [Pg.17]    [Pg.51]    [Pg.144]    [Pg.385]    [Pg.208]   
See also in sourсe #XX -- [ Pg.139 , Pg.143 ]




SEARCH



Alkaline earth metals

Alkaline earths separation

Metal alkaline

Separation earths

© 2024 chempedia.info