Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductor , definition

Temperature control in electrode kinetics, 1121 Terraces, electrodepositon, 1307, 1336 Thermal desorption spectroscopy (TDS), 787 Thermal reactions in semiconductors, definition, 1088... [Pg.51]

For tire purjDoses of tliis review, a nanocrystal is defined as a crystalline solid, witli feature sizes less tlian 50 nm, recovered as a purified powder from a chemical syntliesis and subsequently dissolved as isolated particles in an appropriate solvent. In many ways, tliis definition shares many features witli tliat of colloids , defined broadly as a particle tliat has some linear dimension between 1 and 1000 nm [1] tire study of nanocrystals may be drought of as a new kind of colloid science [2]. Much of die early work on colloidal metal and semiconductor particles stemmed from die photophysics and applications to electrochemistry. (See, for example, die excellent review by Henglein [3].) However, the definition of a colloid does not include any specification of die internal stmcture of die particle. Therein lies die cmcial distinction in nanocrystals, die interior crystalline stmcture is of overwhelming importance. Nanocrystals must tmly be little solids (figure C2.17.1), widi internal stmctures equivalent (or nearly equivalent) to drat of bulk materials. This is a necessary condition if size-dependent studies of nanometre-sized objects are to offer any insight into die behaviour of bulk solids. [Pg.2899]

Figure 7.13. The definitions of ionization potential, Ie, work function, , Fermi level, EF, conduction level, Ec, valence level Ev, and x-potential Xe without (a) and with (b) band bending at the semiconductor-vacuum interface. Figure 7.13. The definitions of ionization potential, Ie, work function, <t>, Fermi level, EF, conduction level, Ec, valence level Ev, and x-potential Xe without (a) and with (b) band bending at the semiconductor-vacuum interface.
CVD/PVD thin films are usually considered as coatings having a thickness of less than ten microns. This is an arbitrary limitation and perhaps a better definition would be a coating that adds little if any mass to the substrate. Most thin films, in fact, are much less than 10 im and may be even less than 0.2 im in the newer semiconductor and optical designs, while some wear and erosion applications can be much thicker than 10 im. [Pg.109]

Polymer films that are sensitive to light, x-rays, or electrons— known as photoresists—are nsed extensively to transfer the pattern of an electronic circuit onto a semiconductor surface. Such films must adhere to the semiconductor surface, cross-link or decompose on exposure to radiation, and nndergo development in a solvent to achieve pattern definition. Virtually all aspects of photoresist processing involve surface and interfacial phenomena, and there are many outstanding problems where these phenomena mnst be controlled. For example, the fabrication of multilayer circuits requires that photoresist films of about 1-pm thickness be laid down over a semiconductor surface that has already been patterned in preceding steps. [Pg.175]

Electrochemistry provides routes to directly prepare nanostructures both delocalized in a random or organized way and localized at predefined surface sites with adjustable aspect ratios. Purity, monodispersity, ligation, and other chemical properties and treatments are definitely important in most cases. By delocalized electrodeposition it is possible to decorate large areas of metal or semiconductor surfaces with structures of a narrow size distribution stable nuclei-clusters can be... [Pg.153]

Let us start with a definition. Semiconductor chemical sensor is an electronic device designed to monitor the content of particles of a certain gas in surrounding medium. The operational principle of this device is based on transformation of the value of adsorption directly into electrical signal. This signal corresponds to amount of particles adsorbed from surrounding medium or deposited on the surface of operational element of the sensor due to heterogeneous diemical reaction. [Pg.5]

Starting with this definition the semiconductor diemical sensors can be arbitrary classified with respect to following features the type of electrophysical characteristics diosen for monitoring, such as electric conductivity, thermal-electromotive force, work function of electron, etc. type and nature of semiconductor adsorbent used as an operational element of the sensor and, finally, the detection method used for monitoring the adsorption response of electrophysical characteristics of die sensor. [Pg.5]

Adsorption related charging of surface naturally affects the value of the thermoelectron work function of semiconductor [4, 92]. According to definition the thermoelectron work function is equal to the difference in energy of a free (on the vacuum level) electron and electron in the volume of the solid state having the Fermi energy (see Fig. 1.5). In this case the calculation of adsorption change in the work function Aiqp) in... [Pg.38]

According to the electronic theory, a particle chemisorbed on the surface of a semiconductor has a definite affinity for a free electron or, depending on its nature, for a free hole in the lattice. In the first case the chemisorbed particle is presented in the energy spectrum of the lattice as an acceptor and in the second as a donor surface local level situated in the forbidden zone between the valency band and the conduction band. In the general case, one and the same particle may possess an affinity both for an electron and a hole. In this case two alternative local levels, an acceptor and a donor, will correspond to it. [Pg.159]

We shall assume that the electron and hole gases on the surface of semiconductor are not degenerate. Then, by definition, ... [Pg.175]

Fundamental to forming high quality structures and devices with thin-films of compound semiconductors is the concept of epitaxy. The definition of epitaxy is variable, but focuses on the formation of single crystal films on single crystal substrates. Homoepitaxy is the formation of a compound on itself. Heteroepitaxy is the formation of a compound on a different compound or element, and is much more prevalent. [Pg.4]

Whether there is currently a nanotechnology is a question of definition. If one asks whether there are (or are soon likely to be) commercial electronic fluidic, photonic, or mechanical devices with critical lateral dimensions less than 20 nm, the answer is no, although there may be in 10 to 20 years. There is, however, a range of important technologies—especially involving colloids, emulsions, polymers, ceramic and semiconductor particles, and metallic alloys—that currently exist. But there is no question that the field of nanoscience already exists. [Pg.136]

The fabrication method generates functional elements via anisotropic etching of high-quality semiconductor wafers, referred to as mother wafers.13 17 25 The process begins with photolithographic definition of patterns... [Pg.409]

The fundamental division of materials when electrical properties are considered is into metals, insulators, and semiconductors. An insulator is a material that normally shows no electrical conductivity. Metals and semiconductors were originally classified more or less in terms of the magnitude of the measured electrical conductivity. However, a better definition is to include in metals those materials for which the... [Pg.461]

This book is divided into three parts the first part covers the fundamental aspects, which should form the backbone of any course. As is evident from the title I consider electrochemistry to be a science of interfaces - the definition is given in the introduction -, so I have treated the interfaces between a metal or a semiconductor and an electrolyte solution, and liquid-liquid interfaces. I have not considered solid... [Pg.296]


See other pages where Semiconductor , definition is mentioned: [Pg.2902]    [Pg.357]    [Pg.378]    [Pg.380]    [Pg.384]    [Pg.384]    [Pg.167]    [Pg.116]    [Pg.22]    [Pg.122]    [Pg.198]    [Pg.301]    [Pg.463]    [Pg.356]    [Pg.554]    [Pg.191]    [Pg.263]    [Pg.286]    [Pg.313]    [Pg.218]    [Pg.739]    [Pg.395]    [Pg.257]    [Pg.23]    [Pg.391]    [Pg.120]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 ]

See also in sourсe #XX -- [ Pg.175 , Pg.176 ]




SEARCH



Organic semiconductor definition

Semiconductor , definition temperature

Semiconductor, conductivity definition

Semiconductor, intrinsic, definition

© 2024 chempedia.info