Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant self-diffusion

Surface active electrolytes produce charged micelles whose effective charge can be measured by electrophoretic mobility [117,156]. The net charge is lower than the degree of aggregation, however, since some of the counterions remain associated with the micelle, presumably as part of a Stem layer (see Section V-3) [157]. Combination of self-diffusion with electrophoretic mobility measurements indicates that a typical micelle of a univalent surfactant contains about 1(X) monomer units and carries a net charge of 50-70. Additional colloidal characterization techniques are applicable to micelles such as ultrafiltration [158]. [Pg.481]

Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

Mechanisms of micellar reactions have been studied by a kinetic study of the state of the proton at the surface of dodecyl sulfate micelles [191]. Surface diffusion constants of Ni(II) on a sodium dodecyl sulfate micelle were studied by electron spin resonance (ESR). The lateral diffusion constant of Ni(II) was found to be three orders of magnitude less than that in ordinary aqueous solutions [192]. Migration and self-diffusion coefficients of divalent counterions in micellar solutions containing monovalent counterions were studied for solutions of Be2+ in lithium dodecyl sulfate and for solutions of Ca2+ in sodium dodecyl sulfate [193]. The structural disposition of the porphyrin complex and the conformation of the surfactant molecules inside the micellar cavity was studied by NMR on aqueous sodium dodecyl sulfate micelles [194]. [Pg.275]

While the order parameters derived from the self-diffusion data provide quantitative estimates of the distribution of water among the competing chemical equilibria for the various pseudophase microstructures, the onset of electrical percolation, the onset of water self-diffusion increase, and the onset of surfactant self-diffusion increase provide experimental markers of the continuous transitions discussed here. The formation of irregular bicontinuous microstructures of low mean curvature occurs after the onset of conductivity increase and coincides with the onset of increase in surfactant self-diffusion. This onset of surfactant diffusion increase is not observed in the acrylamide-driven percolation. This combination of conductivity and self-diffusion yields the possibility of mapping pseudophase transitions within isotropic microemulsions domains. [Pg.262]

Further information on the dependence of structure of microemulsions formed on the alcohol chain length was obtained from measurement of self diffusion coefficient of all the constitutents using NMR techniques (29-34). For microemulsions consisting of water, hydrocarbon, an anionic surfactant and a short chain alcohol and C ) the self diffusion... [Pg.168]

In that case the self diffusion coefficient - concentration curve shows a behaviour distinctly different from the cosurfactant microemulsions. has a quite low value throughout the extension of the isotropic solution phase up to the highest water content. This implies that a model with closed droplets surrounded by surfactant emions in a hydrocarbon medium gives an adequate description of these solutions, found to be significantly higher them D, the conclusion that a non-negligible eimount of water must exist between the emulsion droplets. [Pg.169]

Thus, in summary, self diffusion measurements by Lindman et a (29-34) have clearly indicated that the structure of microemulsions depends to a large extent on the chain length of the oosurfactant (alcohol), the surfactant and the type of system. With short chain alcohols (hydrophilic domains and the structure is best described by a bicontinuous solution with easily deformable and flexible interfaces. This picture is consistent with the percolative behaviour observed when the conductivity is measured as a function of water volume fraction (see above). With long chain alcohols (> Cg) on the other hand, well defined "cores" may be distinguished with a more pronounced separation into hydrophobic and hydrophilic regions. [Pg.169]

The self-diffusion of the individual components is strongly affected by the formation of micelles in the solution. This applies to the surfactant, the counterion, the water, and to solubilized molecules. As illustrated in Fig. 2.11 for sodium dodecyl sulfate, surfactant and counterion diffusion are very weakly dependent on concentration below the CMC while a marked decrease in the micellar region is observed for the surfactant and a less marked one for the counterion37. Water diffusion shows a stronger concentration dependence below the CMC than above it. Self-diffusion studies using radioactive tracers have been performed to obtain information on CMC, on counterion binding, on hydration and on intermicellar interactions and shape changes. [Pg.16]

Figure 7. Schematic diagram comparing the behavior of self-diffusion coefficients of oil (D0), water (Dw), and surfactant (Ds) expected for the droplet inversion transition and the bicontinuous transition of microemulsion depicted in Fig. 6. Figure 7. Schematic diagram comparing the behavior of self-diffusion coefficients of oil (D0), water (Dw), and surfactant (Ds) expected for the droplet inversion transition and the bicontinuous transition of microemulsion depicted in Fig. 6.
Oh et al. [16] have demonstrated that a microemulsion based on a nonionic surfactant is an efficient reaction system for the synthesis of decyl sulfonate from decyl bromide and sodium sulfite (Scheme 1 of Fig. 2). Whereas at room temperature almost no reaction occurred in a two-phase system without surfactant added, the reaction proceeded smoothly in a micro emulsion. A range of microemulsions was tested with the oil-to-water ratio varying between 9 1 and 1 1 and with approximately constant surfactant concentration. NMR self-diffusion measurements showed that the 9 1 ratio gave a water-in-oil microemulsion and the 1 1 ratio a bicontinuous structure. No substantial difference in reaction rate could be seen between the different types of micro emulsions, indicating that the curvature of the oil-water interface was not decisive for the reaction kinetics. More recent studies on the kinetics of hydrolysis reactions in different types of microemulsions showed a considerable dependence of the reaction rate on the oil-water curvature of the micro emulsion, however [17]. This was interpreted as being due to differences in hydrolysis mechanisms for different types of microemulsions. [Pg.58]

While there have been efforts to polymerize other surfactant mesophases and metastable phases, bicontinuous cubic phases have only very recently been the subject of polymerization work. Through the use of polymerizable surfactants, and aqueous monomers, in particular acrylamide, polymerization reactions have been performed in vesicles (4-8). surfactant foams ), inverted micellar solutions (10). hexagonal phase liquid crystals (111, and bicontinuous microemulsions (121. In the latter two cases rearrangement of the microstructure occured during polymerization, which in the case of bicontinuous microemulsions seems inevitable b ause microemulsions are of low viscosity and continually rearranging on the timescale of microseconds due to thermal disruption (131. In contrast, bicontinuous cubic phases are extremely viscous in genei, and although the components display self-diffusion rates comparable to those... [Pg.204]

Interactions between oppositely charged micelles in aqueous solutions spontaneously form vesicles. The self-diffusion coefficient of water and 2H relaxation of 2H-labeled dodecyl trimethyl ammonium chloride of the dodecyl trimethyl ammonium chloride-sodium dodecyl benzenesulfonate systems show that in these mixtures there is limited growth of the micelles with changes in composition. The vesicles abruptly begin to form at a characteristic mixing ratio of the two surfactants. The transition is continuous.205 Transformation from micelle to vesicle in dodecyl trimethyl ammonium chloride-sodium perfluoro-nonanoate aqueous solution has been studied by self-diffusion coefficient measurements, and it was found that at a concentration of 35 wt% with a molar ratio of 1 1, the self-diffusion coefficient of the mixed micelles is far smaller than that of the two individual micelles.206 The characteristics of mixed surfactant... [Pg.167]

We have studied a variety of transport properties of several series of 0/W microemulsions containing the nonionic surfactant Tween 60 (ATLAS tradename) and n-pentanol as cosurfactant. Measurements include dielectric relaxation (from 1 MHz to 15.4 GHz), electrical conductivity in the presence of added electrolyte, thermal conductivity, and water self-diffusion coefficient (using pulsed NMR techniques). In addition, similar transport measurements have been performed on concentrated aqueous solutions of poly(ethylene oxide)... [Pg.275]


See other pages where Surfactant self-diffusion is mentioned: [Pg.2591]    [Pg.250]    [Pg.252]    [Pg.253]    [Pg.258]    [Pg.788]    [Pg.199]    [Pg.146]    [Pg.217]    [Pg.6]    [Pg.22]    [Pg.42]    [Pg.44]    [Pg.121]    [Pg.217]    [Pg.148]    [Pg.151]    [Pg.155]    [Pg.156]    [Pg.160]    [Pg.161]    [Pg.162]    [Pg.163]    [Pg.168]    [Pg.169]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.177]    [Pg.178]    [Pg.179]    [Pg.183]    [Pg.184]    [Pg.186]   
See also in sourсe #XX -- [ Pg.147 , Pg.148 , Pg.149 , Pg.157 ]




SEARCH



Self surfactant

Self-diffusion

Self-diffusivities

Self-diffusivity

Surfactants diffusion

© 2024 chempedia.info