Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectors enantioseparation

An alternative model has been proposed in which the chiral mobile-phase additive is thought to modify the conventional, achiral stationary phase in situ thus, dynamically generating a chiral stationary phase. In this case, the enantioseparation is governed by the differences in the association between the enantiomers and the chiral selector in the stationary phase. [Pg.61]

Early examples of enantioselective extractions are the resolution of a-aminoalco-hol salts, such as norephedrine, with lipophilic anions (hexafluorophosphate ion) [184-186] by partition between aqueous and lipophilic phases containing esters of tartaric acid [184-188]. Alkyl derivatives of proline and hydroxyproline with cupric ions showed chiral discrimination abilities for the resolution of neutral amino acid enantiomers in n-butanol/water systems [121, 178, 189-192]. On the other hand, chiral crown ethers are classical selectors utilized for enantioseparations, due to their interesting recognition abilities [171, 178]. However, the large number of steps often required for their synthesis [182] and, consequently, their cost as well as their limited loadability makes them not very suitable for preparative purposes. Examples of ligand-exchange [193] or anion-exchange selectors [183] able to discriminate amino acid derivatives have also been described. [Pg.16]

A chiral separation medium is a complex system. Ideally, interactions that lead to enantioseparation are maximized while nonspecific interactions should be completely suppressed. Typically, a medium for chromatographic separations involves the solid support, the selector, and the linker connecting the two, as shown in scheme 3-1. [Pg.56]

Enantioseparation is typically achieved as a result of the differences in interaction energies A(AG) between each enantiomer and a selector. This difference does not need to be very large, a modest A(AG) = 0.24 kcal/mol is sufficient to achieve a separation factor a of 1.5. Another mechanism of discrimination of enantiomers involves the preferential inclusion of one into a cavity or within the helical structure of a polymer. The selectivity of a selector is most often expressed in terms of retention of both enantiomers using the separation factor a that is defined as ... [Pg.57]

Inspired by the separation ability of cyclic selectors such as cyclodextrins and crown ethers, Malouk s group studied the synthesis of chiral cyclophanes and their intercalation by cation exchange into a lamellar solid acid, a-zirconium phosphate aiming at the preparation of separation media based on solid inorganic-organic conjugates for simple single-plate batch enantioseparations [77-80]. [Pg.66]

Avery recent study [128] deals with the comparison of two commercially available vancomycin-based CSPs with different surface coverage of the chiral selector in the enantioseparation of P-blockers and profens, by RP and POM separation modes. Higher retention and better resolution were obtained on the CSP with higher coverage of vancomycin in both the separation modes. However, in the case of pro fens, higher retention was not always accompanied by an improvement of the enantioselectivity in the RP mode. An accurate study of the influence of the mobile phase composition was also performed in both the separation modes. [Pg.138]

The [ -adrenoreceptors antagonists (also called [)-blockers) comprise a group of chiral drugs that are mostly used in the treatment of cardiovascular disorders such as hypertension, cardiac arrhythmia, or ischemic heart disease. Teicoplanin is the chiral selector most exploited for the enantioseparation of this class of compounds, followed by vancomycin. Several P-blockers have been analyzed, particularly in the... [Pg.144]

Tesafova, E., Bosdkovd, Z., and Zuskova, L, Enantioseparation of selected iV-tert-butyloxycarbonyl amino acids in high-performance liquid chromatography and capillary electrophoresis with a teicoplanin chiral selector. J. Chromatogr. A, 879, 147, 2000. [Pg.169]

Schmid, M.G. et al., Enantioseparation of dipeptides and tripeptides by micro-HPLC comparing teicoplanin and teicoplanin aglycone as chiral selectors, J. Bio-chem. Biophys. Methods, 61, 1,2004. [Pg.170]

Bergholdt et al. [27] used a short-end injection method combined with S- -CD as chiral selector to obtain fast enantioseparation of ormeloxifene and 15 of its analogs. [Pg.181]

Chip-based enantioseparations using an electrophoresis principle were presented by Gao et al. [59]. They used mono-, two-, and four-channel chips to develop chiral separations of fluorescein isothiocyanate (FlTC)-labeled basic compounds. To obtain the chiral separations, seven neutral CD were screened (i.e., a-CD, fi-CD, y-CD, HP-a-CD, HP-y-CD, and DM-fi-CD). Using the monochannel chip, the seven selectors were screened sequentially. Using the two-channel chip, between-channel repeatability could be demonstrated using the same separation conditions. Using two different selectors in the channels, the analysis time for the screening of the seven CD can be reduced to half, compared to the time needed in the monochannel... [Pg.205]

More than 100 CSPs are commercially available nowadays, which should make the separation of any pair of enantiomers feasible. However, the enantiorecognition mechanisms involved in the chiral recognition between the analytes and the CSPs are complex and therefore the selection of the appropriate CSPs, depending on the structure of the analyte, is a difficult task. A common approach to develop a new enantioseparation is the stepwise trial-and-error approach based on detailed consideration of the enantiorecognition mechanisms between the chiral selector and the analyte, or on the analyst s experience, or on the consultation of literature or databases. However, this approach is time-consuming and often unsuccessful owing to the fact that achieving enantioresolution is often purely empirical... [Pg.483]

From the method development and robustness point of view, the temperature is a parameter that controls equilibria such as pK and enantiomer—chiral selector complexation, or induces structural changes in, e.g., proteins.For chiral separations, generally a lower temperature results in better enantioseparation, but even the opposite has been observed. Sometimes a raise in temperature does not so much affect the enantiomeric separation, but increases the resolution between an enantiomer and a matrix component. ... [Pg.128]

Armstrong, D. W., and Nair, U. B. (1997). Capillary electrophoretic enantioseparations using macrocyclic antibiotics as chiral selectors. Electrophoresis 18, 2331—2342. [Pg.511]

Cyclodextrins have significantly contributed to the development of enantioseparations in CE, where they represent the most widely used chiral selectors. On the other hand, due to its inherently high separation efficiency and diverse technical advantages, CE has contributed enormously to the better understanding of affinity interactions between CDs and chiral analytes. The following text summarizes the recent developments in this field (3-60). [Pg.188]

Capillary electrophoresis has been applied for the enantioselective determination of the binding constants of chiral drugs with cyclodextrins for basically the following two reasons (1) optimization of chiral selector concentration and (2) understanding the fine mechanisms of enantioseparations in CE. The first group of studies have been published mainly on the early stage of chiral CE development, whereas the second goal is followed in the most recent studies, mainly by Rizzi and Kremser (10,13) and Scriba et al. [Pg.196]

The existence of the aforementioned difference between the mobilities of transient diastereomeric complexes of the enantiomers with the chiral selector may have some important consequences in chiral CE. For instance, the enantioseparation can, in principle, be possible even in those cases when the binding constants of both enantiomers to a given chiral selector are the same. On the other hand, this may allow, in certain cases, observation of the reversal of the enantiomer migration order, depending on the concentration of the chiral selector (17). [Pg.199]

Baumy et al. (27) determined the binding constants for two 3,4-dihydro-2//-l-benzopyran derivatives of /3-CD. These binding constants were then used to calculate the optimal concentration of chiral selector for the enantioseparation of the two compounds. The calculation of the optimal concentration of the chiral selector was performed according to Eq. (18). Good agreement was found between the calculated and experimentally observed optimum concentrations for the two compounds. [Pg.200]

Engelhardt (61). Even more interesting can be the enantioseparation with equal binding constants of both enantiomers with the chiral selector but different mobility of the transient diastereomeric complexes. This is conceptually possible in chiral CE, in contrast to chromatographic techniques with immobilized chiral selectors (3,4). [Pg.202]

B Chankvetadze, M Fillet, N Burjanadze, D Bergenthal, C Bergander, H Luft-mann, J Crommen, G Blaschke. Enantioseparation of aminoglutethimide with cyclodextrins in capillary electrophoresis and studies of selector-selectand interactions using NMR spectroscopy and electrospray ionization mass spectrometry. Enantiomer 5 313-322, 2000. [Pg.221]

A Amini, U Paulsen-Sorman. Enantioseparation of local anaesthetic drugs by capillary zone electrophoresis with cyclodextrins as chiral selectors using a partial-filling technique. Electrophoresis 18 1019-1025, 1997. [Pg.357]


See other pages where Selectors enantioseparation is mentioned: [Pg.59]    [Pg.60]    [Pg.74]    [Pg.87]    [Pg.73]    [Pg.74]    [Pg.88]    [Pg.101]    [Pg.30]    [Pg.135]    [Pg.150]    [Pg.171]    [Pg.24]    [Pg.450]    [Pg.470]    [Pg.233]    [Pg.197]    [Pg.199]    [Pg.201]    [Pg.202]    [Pg.206]    [Pg.214]    [Pg.215]   
See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.1001 ]




SEARCH



Chiral selectors, enantioseparation

Enantioseparation

Selectors

© 2024 chempedia.info