Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity for alkane

An Estimate of Fractional Selectivities for Alkane Isomerization Reactions over Metals ... [Pg.182]

The data presented above showed that the oxidative dehydrogenation reactions of the various alkanes share many common features. Thus it is tempting to discuss selectivity for alkane oxidative dehydrogenation with a common scheme. The reaction scheme for ethane oxidation [Eqs. (5)-(7)] provides a useful basis for such a discussion. It shows that the primary reaction of alkane oxidation can take on three different pathways depending on the reaction temperature (Scheme I). The first step in all three pathways is breaking a C—H bond, which is the rate-limiting step. The three pathways are described below. [Pg.24]

The work of Guisnet, reviewed in the previous section, shows that the selectivity for alkane conversion strongly depends on the npt/ A ratio. It appears that a balance between the concentration of metal sites and that of the acid sites has to be struck for optimum activity and selectivity of metal/acid... [Pg.188]

We had previously determined isotopic distribution patterns for alkanes derived from the deuterogenation of several olefins on an amorphous catalyst activated to 300° in hydrogen followed by activation in nitrogen to 470° (52). For reactions at about 60°, the patterns for the alkanes from j)ropylene, 1-butene, cyclopentene, and 1-hexene closely resemble those obtained for hexane from 1-hexene on amorphous catalysts in the present work that for pentane from 2-pentene resembles that for hexane from lower selectivity for alkane-d2. We consider it important that the previous work showed that ethylene led to no ethane containing more than two deuterium atoms. In the previous investigation, the effect of the temperature of... [Pg.50]

TABLE 1 Activity and Selectivity for Alkane Oxidation over bulk activated V0(H2P04)2 ... [Pg.457]

In the work of the author and his associates on bimetallic catalysts comprising various combinations of Group VIII and Group IB metals, it was discovered that the activity of the Group VIII metal for hydrogenolysis reactions of hydrocarbons was decreased markedly by the presence of the Group IB metal (11-15). It was shown that the inhibition of hydrogenolysis leads to improved selectivity for alkane isomerization reactions (11) and for reactions in which saturated hydrocarbons are converted to aromatic hydrocarbons (12,14,15). Interest in bimetallic catalysts increased markedly with the discovery of this selectivity phenomenon. [Pg.3]

Bromine reacts with alkanes by a free radical chain mechanism analogous to that of chlorine There is an important difference between chlorination and brommation how ever Brommation is highly selective for substitution of tertiary hydrogens The spread m reactivity among pnmary secondary and tertiary hydrogens is greater than 10 ... [Pg.177]

The enhanced selectivity of alkane bromination over chlorination can be explained by turning once again to the Hammond postulate. In comparing the abstractions of an alkane hydrogen by Cl- and Br- radicals, reaction with Br- is less exergonic. As a result, the transition state for bromination resembles the alkyl radical more closely than does the transition state for chlorination, and the stability of that radical is therefore more important for bromination than for chlorination. [Pg.338]

A non-acidic isomerization catalyst system has unexpectedly emerged from recent studies by French workers [4] in the area of Mo-oxycarbides. Although at an early stage of development, these new materials exhibit high selectivities for the isomerization of paraffins such as n-heptane. An alternative non-carbenium ion mechanistic route to achieve isomerization of higher alkanes could potentially overcome some of the limitations of conventional solid acid based catalyst systems. [Pg.3]

It is well known also that higher alkanes suffer radical gas phase oxidation above 723 K. Therefore, their use requires catalysts active and selective for deNOx at lower temperatures. The mechanism of NOx elimination is still debated a redox mechanism involving Cu ions is probable, and isolated Cu cations exchanged into MFI [4,5] or mordenite [6] have been found to be more active than CuO clusters. It must be emphasized, however, that acid zeolites exhibit good activity at high temperature, and acid mechanisms have been proposed [7-10]. In presence of Cu this acid mechanism disappears probably due to the decrease of the acidity of mordenite upon Cu exchange [6]. According to... [Pg.621]

Supported metal hydrides of early transition metals catalyze the hydrogenolysis of alkanes at relatively low temperatures (50-150 °C) [29,90-92]. Noteworthy are their differences in product selectivities. For example, the hydrogenolysis of propane in the presence of a large excess of H2 gives a 1 1 mixture of ethane and methane in the case of zirconium hydride, a group 4... [Pg.175]

Hydrogen bonding and electrostatic interactions between the sample molecules and the phospholipid bilayer membranes are thought to play a key role in the transport of such solute molecules. When dilute 2% phospholipid in alkane is used in the artificial membrane [25,556], the effect of hydrogen bonding and electrostatic effects may be underestimated. We thus explored the effects of higher phospholipid content in alkane solutions. Egg and soy lecithins were selected for this purpose, since multicomponent mixtures such as model 11.0 are very costly, even at levels of 2% wt/vol in dodecane. The costs of components in 74% wt/vol (see below) levels would have been prohibitive. [Pg.183]

Further work at EniTecnologies was conducted with Rhodococcus strains. Rhodococ-cus was selected for its metabolical versatility, easy availability in soils and water, and remarkable solvent tolerance. Its capabilities for catalyzing diverse transformation reactions of crude oils, such as sulfur removal, alkanes and aromatics oxidation and catabolism caught their attention. Hence, genetic tools for the engineering of Rhodococcus strains have been applied to improve its biotransformation performance and its tolerance to certain common contaminants of the crude oil, such as cadmium. The development of active biomolecules led to the isolation and characterization of plasmid vectors and promoters. Strains have been constructed in which the careful over-expression of selected components of the desulfurization pathway leads to the enhancement of the sulfur removal activity in model systems. Rhodococcus, Gordona, and Nocardia were transformed in this way trying to improve their catalytic performance in BDS. In a... [Pg.283]

The hydroisomerization of heavy linear alkanes is of a great interest in petroleum industry. Indeed, the transformation of long chain n-alkanes into branched alkanes allows to improve the low temperature performances of diesel or lubricating oils [1-3]. On bifunctional Pt-exchanged zeolite catalysts, n-CK, transformed into monobranched isomers, multibranched isomers and cracking products [4], The HBEA zeolite based catalyst was more selective for isomerization than those containing MCM-22 or HZSM-5 zeolites [4], This was explained on one hand by a rapid diffusion of the reaction intermediates inside the large HBEA channels, and on the other hand by the very small crystallites size of this zeolite (0.02 pm). [Pg.353]

Only large-pore zeolites exhibit sufficient activity and selectivity for the alkylation reaction. Chu and Chester (119) found ZSM-5, a typical medium-pore zeolite, to be inactive under typical alkylation conditions. This observation was explained by diffusion limitations in the pores. Corma et al. (126) tested HZSM-5 and HMCM-22 samples at 323 K, finding that the ZSM-5 exhibited a very low activity with a rapid and complete deactivation and produced mainly dimethyl-hexanes and dimethylhexenes. The authors claimed that alkylation takes place mainly at the external surface of the zeolite, whereas dimerization, which is less sterically demanding, proceeds within the pore system. Weitkamp and Jacobs (170) found ZSM-5 and ZSM-11 to be active at temperatures above 423 K. The product distribution was very different from that of a typical alkylate it contained much more cracked products trimethylpentanes were absent and considerable amounts of monomethyl isomers, n-alkanes, and cyclic hydrocarbons were present. This behavior was explained by steric restrictions that prevented the formation of highly branched carbenium ions. Reactions with the less branched or non-branched carbenium ions require higher activation energies, so that higher temperatures are necessary. [Pg.286]

A variety of solid acids besides zeolites have been tested as alkylation catalysts. Sulfated zirconia and related materials have drawn considerable attention because of what was initially thought to be their superacidic nature and their well-demonstrated ability to isomerize short linear alkanes at temperatures below 423 K. Corma et al. (188) compared sulfated zirconia and zeolite BEA at reaction temperatures of 273 and 323 K in isobutane/2-butene alkylation. While BEA catalyzed mainly dimerization at 273 K, the sulfated zirconia exhibited a high selectivity to TMPs. At 323 K, on the other hand, zeolite BEA produced more TMPs than sulfated zirconia, which under these conditions produced mainly cracked products with 65 wt% selectivity. The TMP/DMH ratio was always higher for the sulfated zirconia sample. These distinctive differences in the product distribution were attributed to the much stronger acid sites in sulfated zirconia than in zeolite BEA, but today one would question this suggestion because of evidence that the sulfated zirconia catalyst is not strongly acidic, being active for alkane isomerization because of a combination of acidic character and redox properties that help initiate hydrocarbon conversions (189). The time-on-stream behavior was more favorable for BEA, which deactivated at a lower rate than sulfated zirconia. Whether differences in the adsorption of the feed and product molecules influenced the performance was not discussed. [Pg.289]


See other pages where Selectivity for alkane is mentioned: [Pg.159]    [Pg.393]    [Pg.27]    [Pg.40]    [Pg.43]    [Pg.41]    [Pg.352]    [Pg.159]    [Pg.393]    [Pg.27]    [Pg.40]    [Pg.43]    [Pg.41]    [Pg.352]    [Pg.39]    [Pg.118]    [Pg.465]    [Pg.171]    [Pg.299]    [Pg.220]    [Pg.251]    [Pg.100]    [Pg.344]    [Pg.65]    [Pg.94]    [Pg.108]    [Pg.142]    [Pg.117]    [Pg.219]    [Pg.116]    [Pg.462]    [Pg.191]    [Pg.258]    [Pg.320]    [Pg.310]    [Pg.240]    [Pg.273]    [Pg.402]   


SEARCH



Alkanes selectivity

Selective alkanes

© 2024 chempedia.info