Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Second-layer phase

Undoubtedly the most successful model of the nematic-smectic A phase transition is the Landau-de Gennes model [201. It is applied in the case of a second-order phase transition by combining a Landau expansion for the free energy in tenns of an order parameter for smectic layering with the elastic energy of the nematic phase [20]. It is first convenient to introduce an order parameter for the smectic stmcture, which allows both for the layer periodicity (at the first hannonic level, cf equation (C2.2A)) and the fluctuations of layer position ur [20] ... [Pg.2559]

The dangling bonds of a Si surface abstract one F atom from an incident F2 molecule while the complementary F atom is scattered back into the gas phase [20]. This abstractive mechanism leads to F adsorjDtion at single sites rather than at adjacent pairs of sites, as observed directly by scanning tunnelling microscopy [21]. Br atoms adsorb only to Ga atoms in the second layer of GaAs(001)-(2 x 4) where empty dangling bonds on the Ga atoms can be filled by electrons from the Br atoms [22]. [Pg.2930]

When extended to the second layer, the Langmuir mechanism requires that the rate of condensation of molecules from the gas phase on to molecules already adsorbed in the first layer, shall be equal to the rate of evaporation from the second layer, i.e. [Pg.43]

Liquid diops, suspended in a continuous liquid medium, separate according to the same laws as solid paiticles. Aftei reaching a boundary, these drops coalesce to form a second continuous phase separated from the medium by an interface that may be well- or ill-defined. The discharge of these separated layers is controlled by the presence of dams in the flow paths of the phases. The relative radii of these dams can be shown by simple hydrostatic considerations to determine the radius of the interface between the two separated layers. The radius is defined by... [Pg.403]

Where there are multi-layers of solvent, the most polar is the solvent that interacts directly with the silica surface and, consequently, constitutes part of the first layer the second solvent covering the remainder of the surface. Depending on the concentration of the polar solvent, the next layer may be a second layer of the same polar solvent as in the case of ethyl acetate. If, however, the quantity of polar solvent is limited, then the second layer might consist of the less polar component of the solvent mixture. If the mobile phase consists of a ternary mixture of solvents, then the nature of the surface and the solute interactions with the surface can become very complex indeed. In general, the stronger the forces between the solute and the stationary phase itself, the more likely it is to interact by displacement even to the extent of displacing both layers of solvent (one of the alternative processes that is not depicted in Figure 11). Solutes that exhibit weaker forces with the stationary phase are more likely to interact with the surface by sorption. [Pg.101]

Scott and Kucera [4] carried out some experiments that were designed to confirm that the two types of solute/stationary phase interaction, sorption and displacement, did, in fact, occur in chromatographic systems. They dispersed about 10 g of silica gel in a solvent mixture made up of 0.35 %w/v of ethyl acetate in n-heptane. It is seen from the adsorption isotherms shown in Figure 8 that at an ethyl acetate concentration of 0.35%w/v more than 95% of the first layer of ethyl acetate has been formed on the silica gel. In addition, at this solvent composition, very little of the second layer was formed. Consequently, this concentration was chosen to ensure that if significant amounts of ethyl acetate were displaced by the solute, it would be derived from the first layer on the silica and not the less strongly held second layer. [Pg.102]

Lateral density fluctuations are mostly confined to the adsorbed water layer. The lateral density distributions are conveniently characterized by scatter plots of oxygen coordinates in the surface plane. Fig. 6 shows such scatter plots of water molecules in the first (left) and second layer (right) near the Hg(l 11) surface. Here, a dot is plotted at the oxygen atom position at intervals of 0.1 ps. In the first layer, the oxygen distribution clearly shows the structure of the substrate lattice. In the second layer, the distribution is almost isotropic. In the first layer, the oxygen motion is predominantly oscillatory rather than diffusive. The self-diffusion coefficient in the adsorbate layer is strongly reduced compared to the second or third layer [127]. The data in Fig. 6 are qualitatively similar to those obtained in the group of Berkowitz and coworkers [62,128-130]. These authors compared the structure near Pt(lOO) and Pt(lll) in detail and also noted that the motion of water in the first layer is oscillatory about equilibrium positions and thus characteristic of a solid phase, while the motion in the second layer has more... [Pg.361]

The orientational structure of water near a metal surface has obvious consequences for the electrostatic potential across an interface, since any orientational anisotropy creates an electric field that interacts with the metal electrons. Hydrogen bonds are formed mainly within the adsorbate layer but also between the adsorbate and the second layer. Fig. 3 already shows quite clearly that the requirements of hydrogen bond maximization and minimization of interfacial dipoles lead to preferentially planar orientations. On the metal surface, this behavior is modified because of the anisotropy of the water/metal interactions which favors adsorption with the oxygen end towards the metal phase. [Pg.362]

It is seen in figure 3 that the two curves, although of the same form, are quite different in magnitude. The first layer to be formed is very strongly held to the surface and is almost complete when the concentration of ethyl acetate in the mobile phase is only about l%w/v. As the concentration of ethyl acetate rises above l%w/v the second layer is only just being formed. The formation of the second layer of ethyl acetate is much slower and obviously the interactions between the solvent molecules with those already adsorbed on the surface are much weaker than their interaction with the silanol groups of the silica gel. [Pg.65]

For larger values of fx the density of the film may, for some systems, increase somewhat before the second layer is initiated. That is, there may be a narrow single-phase region which extends from N=Ni to and... [Pg.233]

Figure 7. Proposed structure model of the cne-dlnEnsicaially ordered streak jhase, the second reconstructed phase observed with the H/Ni(110) system. Again, shaded circles represent Ni atoms of the second layer. Figure 7. Proposed structure model of the cne-dlnEnsicaially ordered streak jhase, the second reconstructed phase observed with the H/Ni(110) system. Again, shaded circles represent Ni atoms of the second layer.
Fig. 27. Phase diagram of an adsorbed film in- the simple cubic lattice from mean-fleld calculations (full curves - flrst-order transitions, broken curves -second-order transitions) and from a Monte Carlo calculation (dash-dotted curve - only the transition of the first layer is shown). Phases shown are the lattice gas (G), the ordered (2x1) phase in the first layer, lattice fluid in the first layer F(l) and in the bulk F(a>). For the sake of clarity, layering transitions in layers higher than the second layer (which nearly coincide with the layering of the second layer and merge at 7 (2), are not shown. The chemical potential at gas-liquid coexistence is denoted as ttg, and 7 / is the mean-field bulk critical temperature. While the layering transition of the second layer ends in a critical point Tj(2), mean-field theory predicts two tricritical points 7 (1), 7 (1) in the first layer. Parameters of this calculation are R = —0.75, e = 2.5p, 112 = Mi/ = d/2, D = 20, and L varied from 6 to 24. (From Wagner and Binder .)... Fig. 27. Phase diagram of an adsorbed film in- the simple cubic lattice from mean-fleld calculations (full curves - flrst-order transitions, broken curves -second-order transitions) and from a Monte Carlo calculation (dash-dotted curve - only the transition of the first layer is shown). Phases shown are the lattice gas (G), the ordered (2x1) phase in the first layer, lattice fluid in the first layer F(l) and in the bulk F(a>). For the sake of clarity, layering transitions in layers higher than the second layer (which nearly coincide with the layering of the second layer and merge at 7 (2), are not shown. The chemical potential at gas-liquid coexistence is denoted as ttg, and 7 / is the mean-field bulk critical temperature. While the layering transition of the second layer ends in a critical point Tj(2), mean-field theory predicts two tricritical points 7 (1), 7 (1) in the first layer. Parameters of this calculation are R = —0.75, e = 2.5p, 112 = Mi/ = d/2, D = 20, and L varied from 6 to 24. (From Wagner and Binder .)...
Reactions that occur on the surface of covalent solids have a complexity that is not as prevalent in metals. Many metal surfaces, especially the close-packed faces, retain the same geometry and bonding arrangement as would be present in the bulk phase. Most semi(x>nductor surfaces, however, undergo reconstructions in which the surface atoms move significant distances from the bulk terminated positions. For example, the Si(001) surface, if bulk terminated, would have each atom bonded to two other silicon atoms in the second layer (Fig. 7). There would be two dangling bonds each with one electron, and the... [Pg.316]

Two of the reactions calce place in the same reactor in this plant. The formation of the hypochlorous acid (HOCl) from chlorine and water, and the reaction with propylene all occur simultaneously on the left in Figure 11—2. Propylene reacts readily with chlorine to form that unwanted by-product, propylene dichloride. To limit that, the HOCl and HCl are kept very dilute. But as a consequence, the concentration of the propylene leaving the reactor is very low—only 3—5% Ac any higher concentration, a separate phase or second layer in the reactor would form. It would preferentially suck up (dissolve) the propylene and chlorine coming in, leading to runaway dichloride yields. The low concentration levels of the propylene chlorohydrin and the need to recycle so many pounds of material is the reason the process is so energy intensive. It just takes a lot of electricity to pump all that stuff around. [Pg.160]

Due to the identical behavior of GT-3 (16) and GT-4 on thin layer chromatography in addition to the ileum assays, these toxins are considered to be very closely related, if not identical. GT-3 likely represents a water soluble carry-over in the initial diethyl ether partition. In light of this observation, the effects of the crude ESAP on the guinea pig ileum previously reported (16) are quite understandable. We surmise that the first phase of Immediate, but reversible inhibition was ellicitied by GT-1 and GT-2 which have already been shown to be competitive in nature (16), and the second, irreversible phase was caused by GT-3. [Pg.265]

Figure 4.14. Phase diagram, coverage vs. temperature, of N2 physisorbed on graphite. Symbols used fluid without any positional or orientational order (F), reentrant fluid (RF), commensurate orientationally disordered solid (CD), commensurate herringbone ordered solid (HB), uniaxial incommensurate orientation-ally ordered (UlO) and disordered (UID) solid, triangular incommensurate orientationally ordered (lO) and disordered (ID) solid, second-layer liquid (2L), second-layer vapour (2V), second-layer fluid (2F), bilayer orientationally ordered (2SO) and disordered (2SD) solid. Solid lines are based on experimental results whereas the dashed lines are speculative. Adapted from Marx Wiechert, 1996. Figure 4.14. Phase diagram, coverage vs. temperature, of N2 physisorbed on graphite. Symbols used fluid without any positional or orientational order (F), reentrant fluid (RF), commensurate orientationally disordered solid (CD), commensurate herringbone ordered solid (HB), uniaxial incommensurate orientation-ally ordered (UlO) and disordered (UID) solid, triangular incommensurate orientationally ordered (lO) and disordered (ID) solid, second-layer liquid (2L), second-layer vapour (2V), second-layer fluid (2F), bilayer orientationally ordered (2SO) and disordered (2SD) solid. Solid lines are based on experimental results whereas the dashed lines are speculative. Adapted from Marx Wiechert, 1996.
Taking the principle of separation of phases one step further, separate layers may also be deposited, one on top of another. This has been done in a number of cases and should present no problem (taking into consideration that there may be some cases where deposition of the second layer will destroy or change in some... [Pg.312]


See other pages where Second-layer phase is mentioned: [Pg.1871]    [Pg.17]    [Pg.305]    [Pg.223]    [Pg.189]    [Pg.25]    [Pg.53]    [Pg.292]    [Pg.202]    [Pg.564]    [Pg.364]    [Pg.140]    [Pg.27]    [Pg.195]    [Pg.188]    [Pg.416]    [Pg.418]    [Pg.102]    [Pg.56]    [Pg.159]    [Pg.93]    [Pg.201]    [Pg.282]    [Pg.46]    [Pg.395]    [Pg.73]    [Pg.397]    [Pg.18]    [Pg.111]    [Pg.922]    [Pg.964]    [Pg.25]   


SEARCH



Second-layer phase compressed monolayers

Second-layer phase herringbone ordering

© 2024 chempedia.info