Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salts electrorefining

A more recently developed pyrometaHurgical process is that of the proposed integral fast reactor, which would use metallic fuel (U—Pu—Zr alloy) and a molten salt electrorefiner as follows ... [Pg.201]

Mullins, L.J. Leary, J.A. "Fused Salt Electrorefining of Molten Plutonium by the LAMEX Process", I and EC Process Design and Development, Vol. 4, Pg. 394, October 1965. [Pg.404]

Choi, S. et al. 2010. Three-dimensional multispecies current density simulation of molten-salt electrorefining. Journal of Alloys and Compounds 503(1) 177-185. [Pg.461]

Figure 7.15 Plotating basket anode in molten salt electrorefining [29]. Figure 7.15 Plotating basket anode in molten salt electrorefining [29].
The purification of the galHum salt solutions is carried out by solvent extraction and/or by ion exchange. The most effective extractants are dialkyl-phosphates in sulfate medium and ethers, ketones (qv), alcohols, and trialkyl-phosphates in chloride medium. Electrorefining, ie, anodic dissolution and simultaneous cathodic deposition, is also used to purify metallic galHum. [Pg.160]

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

The electrorefining of many metals can be carried out using molten salt electrolytes, but these processes are usually expensive and have found Httie commercial use in spite of possible technical advantages. The only appHcation on an industrial scale is the electrorefining of aluminum by the three-layer process. The density of the molten salt electrolyte is adjusted so that a pure molten aluminum cathode floats on the electrolyte, which in turn floats on the impure anode consisting of a molten copper—aluminum alloy. The process is used to manufacture high purity aluminum. [Pg.176]

Electron-beam melting of zirconium has been used to remove the more volatile impurities such as iron, but the relatively high volatiUty of zirconium precludes effective purification. Electrorefining is fused-salt baths (77,78) and purification by d-c electrotransport (79) have been demonstrated but are not in commercial use. [Pg.431]

Electrolytic Processes. The electrolytic procedures for both electrowinning and electrorefining beryUium have primarily involved electrolysis of the beryUium chloride [7787-47-5], BeCl2, in a variety of fused-salt baths. The chloride readUy hydrolyzes making the use of dry methods mandatory for its preparation (see Beryllium compounds). For both ecological and economic reasons there is no electrolyticaUy derived beryUium avaUable in the market-place. [Pg.67]

Plutonium metal is prepared by two methods--direct reduction of the oxide by calcium (DOR)U,2J, and reduction of PuF by calcium in our metal preparation line (MPL)(3) (see Figure 1). In the DOR process, the plutonium contenF of the reduction slag is so low that the slag can be sent to retrievable storage without further processing. Metal buttons that are produced are no purer than the oxide feed and/or the calcium chloride salt. Los Alamos purifies the buttons by electrorefin-ing(4i,5 ), yielding metal rings that are > 99.96 percent plutonium. [Pg.346]

Figure 3 shows a flowsheet for plutonium processing at Rocky Flats. Impure plutonium metal is sent through a molten salt extraction (MSE) process to remove americium. The purified plutonium metal is sent to the foundry. Plutonium metal that does not meet foundry requirements is processed further, either through an aqueous or electrorefining process. The waste chloride salt from MSE is dissolved then the actinides are precipitated with carbonate and redissolved in 7f1 HN03 and finally, the plutonium is recovered by an anion exchange process. [Pg.349]

An overview is presented of plutonium process chemistry at Rocky Flats and of research in progress to improve plutonium processing operations or to develop new processes. Both pyrochemical and aqueous methods are used to process plutonium metal scrap, oxide, and other residues. The pyrochemical processes currently in production include electrorefining, fluorination, hydriding, molten salt extraction, calcination, and reduction operations. Aqueous processing and waste treatment methods involve nitric acid dissolution, ion exchange, solvent extraction, and precipitation techniques. [Pg.365]

Spent anode residues from electrorefining (which contain approximately 20-30 percent of the plutonium fed to the process) are either recycled back to electrorefining, or, if high enough in impurities, are oxidized and sent to oxide dissolution. The spent salt is sent to aqueous dissolution (see Figure 1). [Pg.368]

Early experimental work in electrorefining at Los Alamos by Mullins et-all ) demonstrated that americium could be partitioned between molten plutonium and a molten NaCl-KCl salt containing Pu+3 ions, and Knighton et-al(8), working at ANL on molten salt separation processes for fuel reprocessing, demonstrated that americium could be extracted from Mg-Zn-Pu-Am alloys with immiscible molten magnesium chloride salts. Work... [Pg.382]

The principle of the electrorefining process is basically simple plutonium is oxidized at a liquid metal anode containing impure metal feed and the resulting Pu+3 ions are transported through molten salt to a cathode where pure metal is produced. [Pg.395]

The very chemically reactive plutonium hydride is usually decomposed in a vacuum-tight furnace capable of attaining a temperature of 700°C. Plutonium hydride that is decomposed under vacuum at temperatures below 400°C forms a very fine (<20y) metallic powder above 500°C the powder begins to sinter into a porous frit which melts at 640°C to form a consolidated metal ingot. This metal typically contains significant oxide slag but is suitable for feed to either molten salt extraction or electrorefining. [Pg.402]

Christensen, D.C. Mullins, L.J. "Salt Stripping, a Pyrochemical Approach to the Recovery of Plutonium Electrorefining Salt Residues", Los Alamos Nat. Lab report LA-9464-MS (1982). [Pg.404]

Americium Extraction (more commonly referred to as Molten Salt Ex-or MSE). This process is specifically designed to reduce the americium content of the plutonium metal. (Am241 spontaneously grows into plutonium as a result of Pu241 decay.) When the impure metal contains more than 1000 ppm of americium, it is run through the MSE process. Otherwise, it bypasses the MSE step and proceeds directly to electrorefining. [Pg.412]

Molten Salt Extraction and Electrorefining Salt Recycle. [Pg.424]


See other pages where Salts electrorefining is mentioned: [Pg.426]    [Pg.720]    [Pg.11]    [Pg.1063]    [Pg.432]    [Pg.1063]    [Pg.92]    [Pg.130]    [Pg.4210]    [Pg.249]    [Pg.251]    [Pg.244]    [Pg.244]    [Pg.426]    [Pg.720]    [Pg.11]    [Pg.1063]    [Pg.432]    [Pg.1063]    [Pg.92]    [Pg.130]    [Pg.4210]    [Pg.249]    [Pg.251]    [Pg.244]    [Pg.244]    [Pg.938]    [Pg.355]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.377]    [Pg.397]    [Pg.398]    [Pg.398]    [Pg.414]    [Pg.418]    [Pg.419]    [Pg.425]   


SEARCH



Electrorefining

Electrorefining salt recycle

Molten salt electrorefining

© 2024 chempedia.info