Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salt in hydrogenation

Solutions of this and the hexalluoroantimonate salt in hydrogen fluoride, kept for extended periods between —50 and +50°C, burst the Kel-F or Teflon FEP containers. This was attributed to excess pressure of hydrogen fluoride and nitrogen arising from decomposition of the salts. The variable rates of decomposition indicated catalysis by trace impurities. The salts also decompose exothermally after a short period at ambient temperature. [Pg.60]

Solute solubility in the solvent chosen for extraction can be enhanced by various manipulations of which the more commonly employed are Variation of the dielectric constant of the solvent, salting-in, hydrogen bonding and pH adjustment. These manipulations are illustrated below with special reference to biochemically important extractions wherein their role is crucial. [Pg.24]

A -Oxides of pyridinecarboxylic acids are prepared by oxidation of their potassium salts in hydrogen peroxide/acetic acid. (See also Chapter IV.) The A-oxides, particularly those derived from isocinchomeronic acid, are reputed to inhibit the decomposition of peracids. ... [Pg.299]

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

The existence of the hydride ion is shown by electrolysis of the fused salt when hydrogen is evolved at the anode. If calcium hydride is dissolved in another fused salt as solvent, the amount of hydrogen evolved at the anode on electrolysis is 1 g for each Faraday of current (mole of electrons) passed, as required by the laws of electrolysis. [Pg.112]

Phosphorus forms a large number of oxoacids, many of which cannot be isolated but do form stable salts. In general, ionisable hydrogen is bonded to the phosphorus through an oxygen atom hydrogen atoms attached directly to phosphorus are not ionisable. [Pg.244]

Another aspect of my early research in Budapest was in nitration chemistry, specifically the preparation of nitronium tetrafluoroborate, a stable nitronium salt. 1 was able to prepare the salt in a simple and efficient way from nitric acid, hydrogen fluoride, and boron trifluoride. [Pg.58]

Hydrogenation. Acetylene can be hydrogenated to ethylene and ethane. The reduction of acetylene occurs in an ammoniacal solution of chromous chloride (20) or in a solution of chromous salts in H2SO4 (20). The selective catalytic hydrogenation of acetylene to ethylene, which proceeds... [Pg.374]

In Du Pont patents (116) the catalyst is prepared by spray-drying a mixture of colloidal siUca or other carriers and Pt/Pd salts. Aqueous hydrogen peroxide solutions up to 20 wt % ate reported for reaction conditions of 10—17°C and 13.7 MPa (140 kg/cm ) with 60—70% of the hydrogen feed selectively forming hydrogen peroxide. [Pg.478]

Rea.ctlons, When free (R-R, R -tartaric acid (4) is heated above its melting point, amorphous anhydrides are formed which, on boiling with water, regenerate the acid. Further heating causes simultaneous formation of pymvic acid, CH COCOOH pyrotartaric acid, HOOCCH2CH(CH2)COOH and, finally, a black, charred residue. In the presence of a ferrous salt and hydrogen peroxide, dihydroxymaleic acid [526-84-1] (7) is formed. Nitrating the acid yields a dinitro ester which, on hydrolysis, is converted to dihydroxytartaric acid [617 8-1] (8), which upon further oxidation yields tartronic acid [80-69-3] (9). [Pg.525]

Some phosphides, such as titanium phosphide [12037-65-9] TiP, can be prepared bypassing phosphine over the metal or its haUde. Reaction of phosphine with heavy metal salt solutions often yields phosphines that may contain unsubstituted hydrogens. Phosphides may also be prepared by reducing phosphoms-containing salts with hydrogen, carbon, etc, at high temperatures, the main example of which is the by-product formation of ferrophosphoms in the electric furnace process for elemental phosphoms. Phosphoms-rich phosphides such as vanadium diphosphide [12037-77-3] may be converted to lower phosphides, eg, vanadium phosphide [12066-53-4] by thermal treatment. [Pg.377]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

A flow diagram for the system is shown in Figure 5. Feed gas is dried, and ammonia and sulfur compounds are removed to prevent the irreversible buildup of insoluble salts in the system. Water and soHds formed by trace ammonia and sulfur compounds are removed in the solvent maintenance section (96). The pretreated carbon monoxide feed gas enters the absorber where it is selectively absorbed by a countercurrent flow of solvent to form a carbon monoxide complex with the active copper salt. The carbon monoxide-rich solution flows from the bottom of the absorber to a flash vessel where physically absorbed gas species such as hydrogen, nitrogen, and methane are removed. The solution is then sent to the stripper where the carbon monoxide is released from the complex by heating and pressure reduction to about 0.15 MPa (1.5 atm). The solvent is stripped of residual carbon monoxide, heat-exchanged with the stripper feed, and pumped to the top of the absorber to complete the cycle. [Pg.57]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

The presence of brown polymer in soHd form is sometimes noted even in dry calcium cyanide that has been stored for long periods. Calcium cyanide is decomposed by carbon dioxide, acids, and acidic salts Hberating hydrogen cyanide. [Pg.386]

Palladium catalysts have been prepared by fusion of palladium chloride in sodium nitrate to give palladium oxide by reduction of palladium salts by alkaline formaldehyde or sodium formate, by hydrazine and by the reduction of palladium salts with hydrogen.The metal has been prepared in the form of palladium black, and in colloidal form in water containing a protective material, as well as upon supports. The supports commonly used are asbestos, barium carbonate, ... [Pg.81]


See other pages where Salt in hydrogenation is mentioned: [Pg.155]    [Pg.349]    [Pg.155]    [Pg.349]    [Pg.28]    [Pg.210]    [Pg.2783]    [Pg.53]    [Pg.420]    [Pg.297]    [Pg.976]    [Pg.192]    [Pg.19]    [Pg.114]    [Pg.1152]    [Pg.262]    [Pg.336]    [Pg.296]    [Pg.92]    [Pg.93]    [Pg.182]    [Pg.254]    [Pg.240]    [Pg.293]    [Pg.367]    [Pg.487]    [Pg.102]    [Pg.458]    [Pg.83]    [Pg.146]    [Pg.1545]    [Pg.2205]    [Pg.272]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



© 2024 chempedia.info