Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium applications

Sumi K, Kumobayashi H (2004) Rhodium/Ruthenium Applications. 6 63-96 Suzuki N (2005) Stereospecific Olefin Polymerization Catalyzed by Metallocene Complexes. 8 177-215... [Pg.294]

In this volume, innovative aspects of ruthenium applications in their contribution to green chemistry have been included, notably formation of hydrogen, hydrogenation and hydration of polar multiple bonds, stereoselective alkene metathesis, alkyne transformations via various activation modes, sp C-H and sp C-H bond activation and functionalization, photoredox catalysis and nanoparticles in catalysis. [Pg.407]

As catalysts, ruthenium- or molybdenum-alkylidene complexes are often employed, e.g. commercially available compounds of type 7. Various catalysts have been developed for special applications. " ... [Pg.12]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]

The excellent resistance of platinum, rhodium and iridium to oxidation at high temperatures finds numerous applications in technology, in particular in the form of platinum-based alloys. Osmium and ruthenium form volatile oxides which may be isolated (OSO4 and RujOj), and they are not widely used. [Pg.933]

The most widely used methods for the application of coatings of gold, silver and the platinum group metals (platinum, palladium, rhodium, iridium, ruthenium, osmium) to base metals are mechanical cladding and electroplating. [Pg.557]

Ruthenium, iridium and osmium The use of a fused cyanide electrolyte is the most effective means for the production of sound relatively thick coatings of ruthenium and iridium, but this type of process is unattractive and inconvenient for general purposes and does not therefore appear to have developed yet to a significant extent for industrial application. This is unfortunate, since these metals are the most refractory of the platinum group and in principle their properties might best be utilised in the form of coatings. However, several interesting improvements have been made in the development of aqueous electrolytes. [Pg.563]

For ruthenium, electrolytes based on ruthenium sulphamate or nitrosyl-sulphamate have been described, but the most useful solutions currently available are based on the anionic complex (H2 0 Cl4 Ru N Ru-Cl4-OH2) . The latter solutions operate with relatively high cathode efficiency to furnish bright deposits up to a thickness of about 0-005 0 mm, which are similar in physical characteristics to electrodeposited rhodium and have shown promise in applications for which the latter more costly metal is commonly employed. Particularly interesting is the potential application of ruthenium as an alternative to gold or rhodium plating on the contact members of sealed-reed relay switches. [Pg.563]

Reversible reactions. Consider the elementary reaction A + B P + Q with an equilibrium constant of unity. Such a situation pertains to certain reactions of ruthenium-ammine complexes.14 These authors give an integrated equation applicable when P and Q are absent initially ... [Pg.66]

Abstract For many years after its discovery, olefin metathesis was hardly used as a synthetic tool. This situation changed when well-defined and stable carbene complexes of molybdenum and ruthenium were discovered as efficient precatalysts in the early 1990s. In particular, the high activity and selectivity in ring-closure reactions stimulated further research in this area and led to numerous applications in organic synthesis. Today, olefin metathesis is one of the... [Pg.223]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

Scheme 9 Ruthenium carbene complexes from alkynes and application [17]... Scheme 9 Ruthenium carbene complexes from alkynes and application [17]...
Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]... Scheme 94 Total synthesis of the natural compound dehydrohomoancepsenolide (473) through sequential application of chemoselective ruthenium-catalyzed RCM and tungsten-catalyzed alkyne homodimerization [191]...
The method is not restricted to secondary aryl alcohols and very good results were also obtained for secondary diols [39], a- and S-hydroxyalkylphosphonates [40], 2-hydroxyalkyl sulfones [41], allylic alcohols [42], S-halo alcohols [43], aromatic chlorohydrins [44], functionalized y-hydroxy amides [45], 1,2-diarylethanols [46], and primary amines [47]. Recently, the synthetic potential of this method was expanded by application of an air-stable and recyclable racemization catalyst that is applicable to alcohol DKR at room temperature [48]. The catalyst type is not limited to organometallic ruthenium compounds. Recent report indicates that the in situ racemization of amines with thiyl radicals can also be combined with enzymatic acylation of amines [49]. It is clear that, in the future, other types of catalytic racemization processes will be used together with enzymatic processes. [Pg.105]

Although the process is of significance, it has not well studied. Since the initial development of the CTA hydropurification process in 1960s , only a few papers have been published, mainly regarding catalyst deactivation [2]. Recently, Samsung Corporation, in collaboration with Russian scientists, developed a novel carbon material-CCM supported palladium-ruthenium catalyst and its application to this process [3]. However, pathways and kinetics of CTA hydrogenation, which are crucial to industrialization, are not reported hitherto. [Pg.293]


See other pages where Ruthenium applications is mentioned: [Pg.287]    [Pg.340]    [Pg.291]    [Pg.328]    [Pg.287]    [Pg.340]    [Pg.291]    [Pg.328]    [Pg.109]    [Pg.20]    [Pg.310]    [Pg.265]    [Pg.878]    [Pg.557]    [Pg.564]    [Pg.13]    [Pg.224]    [Pg.230]    [Pg.270]    [Pg.329]    [Pg.359]    [Pg.360]    [Pg.388]    [Pg.24]    [Pg.34]    [Pg.96]    [Pg.191]    [Pg.115]   
See also in sourсe #XX -- [ Pg.399 ]

See also in sourсe #XX -- [ Pg.399 ]

See also in sourсe #XX -- [ Pg.312 , Pg.313 ]




SEARCH



© 2024 chempedia.info