Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resolution synthesis

Figure 4.5 Enzymatic resolution synthesis of phenylalanine from phenylalanine isopropylester applying a continuous stirred-tank reactor with continuous extraction of the unconverted enantiomer... Figure 4.5 Enzymatic resolution synthesis of phenylalanine from phenylalanine isopropylester applying a continuous stirred-tank reactor with continuous extraction of the unconverted enantiomer...
Figure 4.7 Classical kinetic resolution synthesis of L-methionine from IV-acetyl-methionine applying an ultrafiltration-membrane reactor and crystallization step as well as racemization step... Figure 4.7 Classical kinetic resolution synthesis of L-methionine from IV-acetyl-methionine applying an ultrafiltration-membrane reactor and crystallization step as well as racemization step...
Dynamic Kinetic Resolution Synthesis of a Fluorinated Amino Acid Ester Amide by a Continuous Process Lipase-mediated Ethanolysis of an Azalactone... [Pg.162]

Tetrahydronaphthyl hydroperoxide (THPO), kinetic resolution synthesis, 331-2... [Pg.1492]

Synthetic pathways (as of 1990-1995) Salt Crystallization (Initial synthetic route) Chromatographic resolution Synthesis from a chiral pool... [Pg.264]

Calixarenes are prospective candidates of materials for microelectronics. As electron resists, their small and round shape gives ultra-high resolution. Synthesis is comparatively easy starting from very inexpensive substances. Films of calixarenes were made with excellent quality, high heat resistivities and flat surfaces. Pattern fabrications are carried out easily with conventional processes. Thus, calixarene resists provide a practical means to fabricate nanos-tructures down to around 10 nm. It would be a great help to resarch and development of " mesoscopic devices . [Pg.260]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

In a similar way, several cephalosporins have been hydrolyzed to 7-aminodeacetoxycephalosporanic acid (72), and nocardicin C to 6-aminonocardicinic acid (73). Penicillin G amidase from Pscherichia coli has been used in an efficient resolution of a racemic cis intermediate required for a preparation of the synthon required for synthesis of the antibiotic Loracarbef (74). The racemic intermediate (21) underwent selective acylation to yield the cis derivative (22) in 44% yield the product displayed a 97% enantiomeric excess (ee). [Pg.311]

Deamination, Transamination. Two kiads of deamination that have been observed are hydrolytic, eg, the conversion of L-tyrosiae to 4-hydroxyphenyUactic acid ia 90% yield (86), and oxidative (12,87,88), eg, isoguanine to xanthine and formycia A to formycia B. Transaminases have been developed as biocatalysts for the synthetic production of chiral amines and the resolution of racemic amines (89). The reaction possibiUties are illustrated for the stereospecific synthesis of (T)-a-phenylethylamine [98-84-0] (ee of 99%) (40) from (41) by an (5)-aminotransferase or by the resolution of the racemic amine (42) by an (R)-aminotransferase. [Pg.313]

Some of the newer compounds may contain both saturated and unsaturated rings, heteroatoms such as oxygen, nitrogen, or sulfur, and halogen substituents. Others, such as synthetic pyrethroids, may have one or more chiral centers, often needing stereospecific methods of synthesis or resolution of isomers (42). Table 4 Hsts examples of some more complex compounds. Stmctures are shown ia Eigure 1 (25). [Pg.143]

Because they are similar, the aLkanolamines often can be used interchangeably. However, cost/perfomiance considerations generally dictate a best choice for specific appHcations. AMPD is manufactured in very low volumes for use as a reagent in certain medical diagnostic tests, although some is used in certain cosmetic products. 2-Ainino-1-butanol is used primarily as a taw material for the synthesis of ethambutol [74-55-5] an antituberculosis dmg. The first step in the synthesis of this dmg is the resolution of AB into its optical isomers because only (i)-2-amino-l-butanol, [5856-62-2] is utilized in this synthesis. [Pg.19]

In many cases only the racemic mixtures of a-amino acids can be obtained through chemical synthesis. Therefore, optical resolution (42) is indispensable to get the optically active L- or D-forms in the production of expensive or uncommon amino acids. The optical resolution of amino acids can be done in two general ways physical or chemical methods which apply the stereospecific properties of amino acids, and biological or enzymatic methods which are based on the characteristic behavior of amino acids in living cells in the presence of enzymes. [Pg.278]

Enzymatic hydrolysis of A/-acylamino acids by amino acylase and amino acid esters by Hpase or carboxy esterase (70) is one kind of kinetic resolution. Kinetic resolution is found in chemical synthesis such as by epoxidation of racemic allyl alcohol and asymmetric hydrogenation (71). New routes for amino acid manufacturing are anticipated. [Pg.279]

J. Jaques, A. CoUet, and S. WiUen, Enantiomers, Racemate, and Resolutions,]o m Wiley Sons, Inc., New York, 1981 The Chemical Society of Japan, eds., Kikan Kagaku Sosetsu (No. 6, Resolution of Optical Isomers), Gakkai Shuppan Senta, Tokyo, Japan, 1989 G. C. Barrett ia Ref. 1, Chapt. 10, pp. 338—353 S. Otsuka and T. Mukaiyama, Progress of ylsymmetric Synthesis and Optical Resolution (ia Japanese), Kagaku Dojia, Kyoto, Japan, 1982. [Pg.298]

Because the starting materials were optically active, the products were all pure enantiomers. Later, the synthetic scheme shown in Figure 5 was developed (22,45). Resolution of the racemic mixture was accompHshed at the penultimate stage and the optically active D-threo-amine (7) was converted to florfenicol (2). This synthetic process also resulted in the synthesis of thiamphenicol shown in Figure 6 using 1,1,2,3,3,3-hexafluoropropyl diethylamine (FPA) (46). More recently an improved method of synthesis of florfenicol has been developed (17). [Pg.517]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

Since this original synthesis, a great number of improvements (191—201) have been made in the stereoselective preparation and derivatization of the CO-chain precursor, in cuprate reagent composition and preparation, in protecting group utilization, and in the preparation and resolution of hydroxycyclopentenones. Illustration of some of the many improvements are seen in a synthesis (202) of enisoprost, a PGE analogue. The improvements consist of a much more efficient route to the enone as well as modifications in the cuprate reactions. Preparation of the racemic enone is as follows ... [Pg.161]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

Despite the progress made in the stereoselective synthesis of (R)-pantothenic acid since the mid-1980s, the commercial chemical synthesis still involves resolution of racemic pantolactone. Recent (ca 1997) synthetic efforts have been directed toward developing a method for enantioselective synthesis of (R)-pantolactone by either chemical or microbial reduction of ketopantolactone. Microbial reduction of ketopantolactone is a promising area for future research. [Pg.63]

The study of the biosynthesis of vitamin B 2 is a saga whose resolution, due primarily to Battersby (80—83) and Scott (84,85), requited an effort on the same magnitude as the total synthesis. It was only when recent molecular biology tools became available to complement en2ymology, isotopic labeling, chemical synthesis, and spectroscopy that solution of this problem became possible. [Pg.117]

Enzyme-Catalyzed Asymmetric Synthesis. The extent of kinetic resolution of racemates is determined by differences in the reaction rates for the two enantiomers. At the end of the reaction the faster reacting enantiomer is transformed, leaving the slower reacting enantiomer unchanged. It is apparent that the maximum product yield of any kinetic resolution caimot exceed 50%. [Pg.332]

Kinetic Resolutions. From a practical standpoint the principal difference between formation of a chiral molecule by kinetic resolution of a racemate and formation by asymmetric synthesis is that in the former case the maximum theoretical yield of the chiral product is 50% based on a racemic starting material. In the latter case a maximum yield of 100% is possible. If the reactivity of two enantiomers is substantially different the reaction virtually stops at 50% conversion, and enantiomericaHy pure substrate and product may be obtained ia close to 50% yield. Convenientiy, the enantiomeric purity of the substrate and the product depends strongly on the degree of conversion so that even ia those instances where reactivity of enantiomers is not substantially different, a high purity material may be obtained by sacrificing the overall yield. [Pg.337]


See other pages where Resolution synthesis is mentioned: [Pg.176]    [Pg.111]    [Pg.176]    [Pg.111]    [Pg.1328]    [Pg.126]    [Pg.320]    [Pg.1122]    [Pg.505]    [Pg.660]    [Pg.703]    [Pg.952]    [Pg.53]    [Pg.11]    [Pg.241]    [Pg.242]    [Pg.247]    [Pg.446]    [Pg.429]    [Pg.443]    [Pg.30]    [Pg.441]    [Pg.292]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Absolute Configuration, Optical Purity, Asymmetric Synthesis, Resolution

Asymmetric synthesis resolution

Dynamic kinetic resolution enzymatic stereoselective synthesis

Enantiomers, asymmetric synthesis resolution

Enantioselective Synthesis or Resolution of Chiral Ligands

Enzymatic synthesis chiral alcohols, kinetic resolution

Hydrolytic kinetic resolution, epoxides synthesis

Lipase-catalyzed optical resolution coupled with in situ inversion synthesis of prallethrin (pyrethroid), etc

Natural product synthesis racemic alcohols, kinetic resolution

Optically active compounds synthesis, Resolution

Resolution-Based L-Phenylalanine Synthesis

Syntheses of Estrone requiring a Resolution Stage

Synthesis resolution functions

© 2024 chempedia.info