Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resolution of instruments

The increasing interest of researchers for fluorescent probes can be explained by the great improvement of the sensitivity and the spatial or temporal resolution of instruments, and by the development of a wide choice of commercially available probes for particular applications (Molecular Probes, Inc., United States Lambda Fluoreszenztechnologie Ges.m.b.H., Austria). However, there is still a need for probes with improved specific response and minimum perturbation of the microenvironment, in particular in the field of ion recognition which is the object of this chapter. [Pg.21]

The absorption of aromatic compounds produces more complex spectra than that of ethylenic compounds. The 7r —> n transitions result in the presence of fine structure in the spectrum. The spectrum of benzene vapour, obtained by depositing a droplet in a quartz cell of 1 cm pathlength, is an excellent test to evaluate the resolution of instruments in the near UV (Fig. 11.1). Substitution on the benzene ring produces modifications in the shape of the absorption bands. [Pg.197]

Total resolution of instrument is dependent on convolution of X-ray source width, natural linewidth of peak, analyzer resolution and is given by... [Pg.225]

The calculated spectra for the ice II (H2O and D2O) up to 120 meV are shown in Figure I. The energy positions of these calculated spectra (continuous lines) agree well with the measured neutron spectra (dotted data) though we note that the calculated intensities in the librational region are lower than the measured spectrum. In our calculations die resolution of instrument has not been cmisidered so the data is sharper... [Pg.348]

During testing a depth resolution of 50-80 micron and a lateral resolution of 20-40 micron was achieved. The spatial resolution was limited not mainly hy source or camera properties, but by the accuracy of compensation of the instrumental errors in the object movements and misalignments. According to this results a mote precision object rotation system and mote stable specimen holding can do further improvements in the space resolution of microlaminography. [Pg.572]

For this experiment, as well as for the microtomography ( 3.2) we used the commercial desktop microtomography system Skyscan 1072 [5], the setup of which is sketched in Figure 1. For this instrument, which is designed to study relatively large objects with a diameter up to 50 mm, the source size is 8 pm, the distance source-detector is about 50 cm and the effective resolution of the detector is about 80 pm. For this system and this object, the global effective resolution a is estimated to be of the order of 50 to 100 pm [6]. [Pg.576]

In the simplest fomi, reflects the time of flight of the ions from the ion source to the detector. This time is proportional to the square root of the mass, i.e., as the masses of the ions increase, they become closer together in flight time. This is a limiting parameter when considering the mass resolution of the TOP instrument. [Pg.1351]

The final velocity of these two ions will be the same, but their final flight times will differ by the above turnaround time, This results in a broadening of the TOF distributions for each ion mass, and is anotiier limiting factor when considering the mass (time) resolution of the instrument. [Pg.1353]

B1.17.5.3 MODERN DEVELOPMENTS OF INSTRUMENTS AFFECTING IMAGE CONTRAST AND RESOLUTION... [Pg.1642]

A completely new method of determining siufaces arises from the enormous developments in electron microscopy. In contrast to the above-mentioned methods where the surfaces were calculated, molecular surfaces can be determined experimentally through new technologies such as electron cryomicroscopy [188]. Here, the molecular surface is limited by the resolution of the experimental instruments. Current methods can reach resolutions down to about 10 A, which allows the visualization of protein structures and secondary structure elements [189]. The advantage of this method is that it can be apphed to derive molecular structures of maaomolecules in the native state. [Pg.129]

Infrared instruments using a monochromator for wavelength selection are constructed using double-beam optics similar to that shown in Figure 10.26. Doublebeam optics are preferred over single-beam optics because the sources and detectors for infrared radiation are less stable than that for UV/Vis radiation. In addition, it is easier to correct for the absorption of infrared radiation by atmospheric CO2 and 1420 vapor when using double-beam optics. Resolutions of 1-3 cm are typical for most instruments. [Pg.393]

Since the microchannel plate collector records the arrival times of all ions, the resolution depends on the resolution of the TOP instrument and on the response time of the microchannel plate. A microchannel plate with a pore size of 10 pm or less has a very fast response time of less than 2 nsec. The TOP instrument with microchannel plate detector is capable of unit mass resolution beyond m/z 3000. [Pg.198]

Almost any type of analyzer could be used to separate isotopes, so their ratios of abundances can be measured. In practice, the type of analyzer employed will depend on the resolution needed to differentiate among a range of isotopes. When the isotopes are locked into multielement ions, it becomes difficult to separate all of the possible isotopes. For example, an ion of composition CgHijOj will actually consist of many compositions if all of the isotopes ( C, C, H, H, 0, O, and 0) are considered. To resolve all of these isotopic compositions before measurement of their abundances is difficult. For low-molecular-mass ions (HjO, COj) or for atomic ions (Ca, Cl), the problems are not so severe. Therefore, most accurate isotope ratio measurements are made on low-molecular-mass species, and resolution of these even with simple analyzers is not difficult. The most widely used analyzers are based on magnets, quadrupoles, ion traps, and time-of-flight instruments. [Pg.365]

This focusing action gives an ion beam, in which the m/z values can be measured so accurately that the resolution of a magnetic/electric-sector instrument (separation of ions of different m/z values) is measured as a few parts per million, compared to the more modest few parts per thousand in, say, a quadmpole or ion-trap instrument. [Pg.402]

Unlike the array collector, with a microchannel plate all ions of only one m/z value are detected simultaneously, and instrument resolution does not depend on the number of elements in the micro-channel array or on the separation of one element from another. For a microchannel plate, resolution of m/z values in an ion beam depends on their being separated in time by the analyzer so that their times of arrival at the plate differ. [Pg.410]

Instrumental Interfaces. The basic objective for any coupling between a gas chromatograph (gc) and a mass spectrometer (ms) is to reduce the atmospheric operating pressure of the gc effluent to the operating pressure in the ms which is about 10 kPa (10 torr). Essential interface features include the capability to transmit the maximum amount of sample from the gc without losses from condensation or active sites promoting decomposition no restrictions or compromises placed on either the ms or the gc with regard to resolution of the components and reliability. The interface should also be mechanically simple and as low in cost as possible. [Pg.400]

As time goes on, the ultimate resolution of the SEM operated in these modes will probably level out near 1 nm. The major growth of SEMs now seems to be in the development of specialized instruments. An environmental SEM has been developed that uses differential pumping to permit the observation of specimens at higher pressures. Photographs of the formation of ice crystals have been taken and the instrument has particular application to samples that are not vacuum compatible, such as biological samples. [Pg.83]


See other pages where Resolution of instruments is mentioned: [Pg.274]    [Pg.701]    [Pg.274]    [Pg.16]    [Pg.672]    [Pg.274]    [Pg.701]    [Pg.274]    [Pg.16]    [Pg.672]    [Pg.263]    [Pg.1017]    [Pg.1122]    [Pg.1165]    [Pg.1235]    [Pg.1236]    [Pg.1307]    [Pg.1341]    [Pg.1353]    [Pg.1426]    [Pg.1590]    [Pg.1625]    [Pg.166]    [Pg.166]    [Pg.166]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.179]    [Pg.191]    [Pg.252]    [Pg.281]    [Pg.52]    [Pg.310]    [Pg.58]    [Pg.109]    [Pg.112]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Instrumentation resolution

Resolution, instrument

Setting the Resolution of a Sector Instrument

© 2024 chempedia.info