Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins, in alcohol

Rubber-latex Phenol-formaldehyde resin in alcohol Sulphur sol in water... [Pg.180]

Knot sealer n. Solutions of various resins in alcohol, used to seal knots in new wood. [Pg.557]

The polyvinyl resin, in alcohol, is added to a liquid resole. [Pg.99]

Formaldehyde—Alcohol Solutions. These solutions are blends of concentrated aqueous formaldehyde, the alcohol, and the hemiacetal. Methanol decreases the average molecular weight of formaldehyde oligomers by formation of lower molecular weight hemiacetals. These solutions are used to produce urea and melamine resins the alcohol can act as the resin solvent and as a reactant. The low water content can improve reactivity and reduce waste disposal and losses. Typical specifications for commercially available products are shown in Table 7 (117). [Pg.497]

The nitro alcohols available in commercial quantities are manufactured by the condensation of nitroparaffins with formaldehyde [50-00-0]. These condensations are equiUbrium reactions, and potential exists for the formation of polymeric materials. Therefore, reaction conditions, eg, reaction time, temperature, mole ratio of the reactants, catalyst level, and catalyst removal, must be carefully controlled in order to obtain the desired nitro alcohol in good yield (6). Paraformaldehyde can be used in place of aqueous formaldehyde. A wide variety of basic catalysts, including amines, quaternary ammonium hydroxides, and inorganic hydroxides and carbonates, can be used. After completion of the reaction, the reaction mixture must be made acidic, either by addition of mineral acid or by removal of base by an ion-exchange resin in order to prevent reversal of the reaction during the isolation of the nitro alcohol (see Ion exchange). [Pg.61]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Laminates. Laminate manufacture involves the impregnation of a web with a Hquid phenoHc resin in a dip-coating operation. Solvent type, resin concentration, and viscosity determine the degree of fiber penetration. The treated web is dried in an oven and the resin cures, sometimes to the B-stage (semicured). Final resin content is between 30 and 70%. The dry sheet is cut and stacked, ready for lamination. In the curing step, multilayers of laminate are stacked or laid up in a press and cured at 150—175°C for several hours. The resins are generally low molecular weight resoles, which have been neutralized with the salt removed. Common carrier solvents for the varnish include acetone, alcohol, and toluene. Alkylated phenols such as cresols improve flexibiUty and moisture resistance in the fused products. [Pg.306]

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

For aqueous inks, the resins are water- or alkali-soluble or dispersible and the solvent is mosdy water containing sufficient alcohol (as much as 25%) to help solubilize the resin. To keep the alkah-soluble resin in solution, pH must be maintained at the correct level. Advances include the development of uv inks. These are high viscosity inks that require no drying but are photocurable by uv radiation. In these formulations, the solvent is replaced by monomers and photoinitiators that can be cross-linked by exposure to uv radiation. The advantage of this system is the complete elimination of volatile organic compounds (VOC) as components of the system and better halftone print quaUty. Aqueous and uv inks are becoming more popular as environmental pressure to reduce VOC increases. [Pg.50]

Conversions of ca 75% are obtained for propylene hydration over cation-exchange resins in a trickle-bed reactor (102). Excess Hquid water and gaseous propylene are fed concurrentiy into a downflow, fixed-bed reactor at 400 K and 3.0—10.0 MPa (30—100 atm). Selectivity to isopropanol is ca 92%, and the product alcohol is recovered by azeotropic distillation with benzene. [Pg.129]

IManila Copal. The Manilas are collected in Indonesia and the Philippines. They are soluble in alcohols and ketones, and insoluble in hydrocarbons and esters. The resins soften between 81—90°C and have acid numbers of 110—141. Principal uses are in coatings and varnishes. [Pg.140]

Sandarac. This resin, which originates in Morocco, is a polar, acidic, hard resin with a softening point of 100—130°C, an acid number of 117—155, and a saponification number of 145—157. Sandarac [9000-57-1] is soluble in alcohols and insoluble in aryl and aUphatic hydrocarbons. It is used in varnishes and lacquers for coating paper, wood, and metal. [Pg.140]

Mastic. Most commercial mastic [61789-92-2] is collected on the Greek island of Chios, near the Turkish coast. It is a soft resin with a softening point of 55°C. It has an acid number of 50—70 and a saponification number of 62—90. It is soluble in alcohols and aryl hydrocarbons. Mastic is used in wood coatings, lacquers, adhesives, and printing inks. [Pg.141]

Poly(vinyl acetate) and its copolymers with ethylene are available as spray-dried emulsion soHds with average particle sizes of 2—20 p.m the product can be reconstituted to an emulsion by addition of water or it can be added directly to formulations, eg, concrete. The powders may be used to raise soHds of a lower soHds latex. Solutions of resin in methyl and ethyl alcohol at 2—50 wt % soHds are also available. [Pg.468]

Group of plastics composed of resins in which the furane ring is an integral portion of the polymer chain made from polymerization or polyconden-sation of furfural, furfural alcohol and other compounds containing furane rings also formed by reaction of furane compounds with an equal weight or less of other compounds. [Pg.133]

Delphinine, C34H47O9N (Walz) or C33H45O9N (J. and C.). The alkaloid crystallises in rhombs, or six-sided plates, m.p. 198-200°, [a]f ° + 25° (EtOH), shows mutarotation in alcoholic solution, and forms an acid oxalate, B. H2C2O4, m.p. 168° dry), a hydrochloride, B. HCl, m.p. 208-210°, and a monobenzoyl derivative, m.p. 171-3°. On alkaline hydrolysis it yields one molecule each of acetic and benzoic acids. The basic, hydrolytic product of this action is delphonine, C24H3g07N, which is amorphous, but can be distilled at a bath temperature of 140° and a pressure of 0-001 to 0-0001 mm. The brittle, possibly semi-crystalline resin so obtained, has m.p, 76-8° and [a]f ° - - 37-5 (EtOH). [Pg.697]

Resin is frequently found in cassia oil. It interferes with the accurate determination of the aldehyde by making it difficult to read off the uncombined oil. It may be detected by adding a solution of lead acetate in 70 per cent, alcohol to a solution of the oil in alcohol of the same strength. The presence of resin increases the amount of non-volatile residue, and also increases the acid value of the oil. [Pg.357]

Bisphenol A is a solid material in the form of white flakes, insoluble in water but soluble in alcohols. As a phenolic compound, it reacts with strong alkaline solutions. Bisphenol A is an important monomer for producing epoxy resins, polycarbonates, and polysulfones. It is produced by the condensation reaction of acetone and phenol in the presence of HCI. (See Chapter 10, p. 273)... [Pg.231]

Several cases of spontaneous ignition after exposure to air of fine coke particles removed from filter strainers on a petroleum refinery furfural extraction unit have been noted. This has been associated with the use of sodium hydrogen carbonate (bicarbonate) injected into the plant for pH control, which produced a pH of 10.5 locally. This would tend to resinify the aldehyde, but there is also the possibility of a Cannizzaro reaction causing conversion of the aldehyde to furfuryl alcohol and furoic acid. The latter, together with other acidic products of autoxidation of the aldehyde, would tend to resinily the furfuryl alcohol. Pyrolysis GLC showed the presence of a significant proportion of furfuryl alcohol-derived resins in the coke. The latter is now discarded into drums of water, immediately after discharge from the strainers, to prevent further incidents. [Pg.602]


See other pages where Resins, in alcohol is mentioned: [Pg.74]    [Pg.322]    [Pg.323]    [Pg.833]    [Pg.74]    [Pg.322]    [Pg.323]    [Pg.833]    [Pg.80]    [Pg.358]    [Pg.51]    [Pg.455]    [Pg.331]    [Pg.337]    [Pg.342]    [Pg.19]    [Pg.263]    [Pg.606]    [Pg.884]    [Pg.419]    [Pg.778]    [Pg.538]    [Pg.201]    [Pg.233]    [Pg.126]    [Pg.201]    [Pg.601]    [Pg.214]    [Pg.156]    [Pg.203]    [Pg.373]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



© 2024 chempedia.info