Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refractory time

In Germany and Japan, pulverized quicklime is used in making self-fluxing sinters, partially replacing limestone. Granular dead-burned dolomite is stiU used to protect the refractory lining of open-hearth and electric furnaces, but not the basic oxygen furnace. Refractory time has declined with the... [Pg.177]

Medico-technical instruments such as infusion pumps can be used in PCA (patient-controlled analgesia, Fig. 1) to provide patient-orientated and therapy as required, e.g. with morphine injection solutions. Depending on the patients perception of pain, they may add small doses of analgesics to the basic infusion by means of an electrically controlled infusion pump. The physician specifies the basic dose, which is infused independent of patient demands, the boluses that can be demanded, an hourly maximum dose and a refractory time that cannot be reduced between two doses. The infusion may be given intravenously, subcutaneously, epidurally or intraspinally. [Pg.247]

The precise time from which on a new perturbation can excite the system depends on the stimulus. One therefore usually talks about the relative refractory time. [Pg.3]

Actually, the motion of the curves is not completely independent. A propagating excitation front is followed in excitable media by the recovery tail. When the distance between the waves moving in the same direction is shorter than the length of such a tail the waves interact. Such recovery effects become important for spiral waves when their rotation period is comparable to the characteristic refractory time of the medium. This happens when spiral waves are no longer sparse, i.e. the conditions of weakly excitable media are... [Pg.120]

A microwave pulse from a tunable oscillator is injected into the cavity by an anteima, and creates a coherent superposition of rotational states. In the absence of collisions, this superposition emits a free-mduction decay signal, which is detected with an anteima-coupled microwave mixer similar to those used in molecular astrophysics. The data are collected in the time domain and Fourier transfomied to yield the spectrum whose bandwidth is detemimed by the quality factor of the cavity. Hence, such instruments are called Fourier transfomi microwave (FTMW) spectrometers (or Flygare-Balle spectrometers, after the inventors). FTMW instruments are extraordinarily sensitive, and can be used to examine a wide range of stable molecules as well as highly transient or reactive species such as hydrogen-bonded or refractory clusters [29, 30]. [Pg.1244]

The fractionation of these refractory elements is beheved to be the result of relative efficiencies of incorporation of condensed sohds rich in early high temperature phases into the meteorite parent bodies at different times and locations in the solar nebula. The data are taken from Reference 3. [Pg.98]

Transfusion-induced autoimmune disease has been a significant complication in the treatment of patients who require multiple platelet transfusions. Platelets and lymphocytes carry their own blood group system, ie, the human leukocyte antigen (HLA) system, and it can be difficult to find an HLA matched donor. A mismatched platelet transfusion does not induce immediate adverse reactions, but may cause the patient to become refractory to the HLA type of the transfused platelets. The next time platelets with an HLA type similar to that of the transfused platelets are transfused, they are rejected by the patient and thus have no clinical efficacy. Exposure to platelets originating from different donors is minimized by the use of apheresis platelets. One transfusable dose (unit) of apheresis platelets contains 3-5 x 10 platelets. An equal dose of platelets from whole blood donation requires platelets from six to eight units of whole blood. Furthermore, platelets can be donated every 10 days, versus 10 weeks for whole blood donations. [Pg.520]

These furnaces may operate batchwise or continuous. In the batch, intermittent, or periodic types, the content is heated at the desired temperature for the stipulated time and then removed. In the continuous type, the charge moves at a predeterrnined rate through one or more heating 2ones to emerge in most cases at the end opposite the point of entry. Figures 9 and 10 are representative examples of typical, industrial refractory-wall furnaces. [Pg.146]

A more extensive comparison of many potential turbine blade materials is available (67). The refractory metals and a ceramic, sHicon nitride, provide a much higher value of 100 h stress—mpture life, normalised by density, than any of the cobalt- or nickel-base aHoys. Several intermetaHics and intermetaUic matrix composites, eg, aHoyed Nb Al and MoSi —SiC composites, also show very high creep resistance at 1100°C (68). Nevertheless, the superaHoys are expected to continue to dominate high temperature aHoy technology for some time. [Pg.129]

The unit Kureha operated at Nakoso to process 120,000 metric tons per year of naphtha produces a mix of acetylene and ethylene at a 1 1 ratio. Kureha s development work was directed toward producing ethylene from cmde oil. Their work showed that at extreme operating conditions, 2000°C and short residence time, appreciable acetylene production was possible. In the process, cmde oil or naphtha is sprayed with superheated steam into the specially designed reactor. The steam is superheated to 2000°C in refractory lined, pebble bed regenerative-type heaters. A pair of the heaters are used with countercurrent flows of combustion gas and steam to alternately heat the refractory and produce the superheated steam. In addition to the acetylene and ethylene products, the process produces a variety of by-products including pitch, tars, and oils rich in naphthalene. One of the important attributes of this type of reactor is its abiUty to produce variable quantities of ethylene as a coproduct by dropping the reaction temperature (20—22). [Pg.390]

Refractoriness. Refractoriaess is determined by several methods. The pyrometric cone equivalent (PCE) test (ASTM C24) measures the softening temperature of refractory materials. Inclined trigonal pyramids (cones) are formed from finely ground materials, set on a base, and heated at a specific rate. The time and temperature (heat treatment) requited to cause the cone to bend over and touch the base is compared to that for standard cones. [Pg.35]

Inhalation of certain fine dusts may constitute a health hazard. Eor example, exposure to siUca, asbestos, and beryllium oxide dusts over a period of time results ki the potential risk of lung disease. OSHA regulations specify the allowable levels of exposure to kigestible and respkable materials. Material Safety Data Sheets, OSHA form 20, available from manufacturers, provide information about hazards, precautions, and storage pertinent to specific refractory products. [Pg.35]

Any refractory material that does not decompose or vaporize can be used for melt spraying. Particles do not coalesce within the spray. The temperature of the particles and the extent to which they melt depend on the flame temperature, which can be controlled by the fueLoxidizer ratio or electrical input, gas flow rate, residence time of the particle in the heat zone, the particle-size distribution of the powders, and the melting point and thermal conductivity of the particle. Quenching rates are very high, and the time required for the molten particle to soHdify after impingement is typically to... [Pg.45]

Sihca and aluminosihcate fibers that have been exposed to temperatures above 1100°C undergo partial conversion to mullite and cristobaUte (1). Cristobahte is a form of crystalline siUca that can cause siUcosis, a form of pneumoconiosis. lARC has deterrnined that cristobaUte should be classified as 2A, a probable carcinogen. The amount of cristobahte formed, the size of the crystals, and the nature of the vitreous matrix in which they are embedded are time- and temperature-dependent. Under normal use conditions, refractory ceramic fibers are exposed to a temperature gradient, thus only the hottest surfaces of the material may contain appreciable cristobahte. Manufacturers Material Safety Data Sheets (MSDS) should be consulted prior to handling RCF materials. [Pg.57]

Refractory lining life was at one time an important maintenance cost, but developments using a nitrogen lance to splash slag over the walls have increased lining life by a factor of -- 10 (2000 to 20,000 heats). [Pg.377]

Properties. Uranium metal is a dense, bright silvery, ductile, and malleable metal. Uranium is highly electropositive, resembling magnesium, and tarnishes rapidly on exposure to air. Even a poHshed surface becomes coated with a dark-colored oxide layer in a short time upon exposure to air. At elevated temperatures, uranium metal reacts with most common metals and refractories. Finely divided uranium reacts, even at room temperature, with all components of the atmosphere except the noble gases. The silvery luster of freshly cleaned uranium metal is rapidly converted first to a golden yellow, and then to a black oxide—nitride film within three to four days. Powdered uranium is usually pyrophoric, an important safety consideration in the machining of uranium parts. The corrosion characteristics of uranium have been discussed in detail (28). [Pg.319]

For practical reasons, the blast furnace hearth is divided into two principal zones the bottom and the sidewalls. Each of these zones exhibits unique problems and wear mechanisms. The largest refractory mass is contained within the hearth bottom. The outside diameters of these bottoms can exceed 16 or 17 m and their depth is dependent on whether underhearth cooling is utilized. When cooling is not employed, this refractory depth usually is determined by mathematical models these predict a stabilization isotherm location which defines the limit of dissolution of the carbon by iron. Often, this depth exceeds 3 m of carbon. However, because the stabilization isotherm location is also a function of furnace diameter, often times thermal equiHbrium caimot be achieved without some form of underhearth cooling. [Pg.522]

The Cardiac Cycle. The heart (Eig. lb) performs its function as a pump as a result of a rhythmical spread of a wave of excitation (depolarization) that excites the atrial and ventricular muscle masses to contract sequentially. Maximum pump efficiency occurs when the atrial or ventricular muscle masses contract synchronously (see Eig. 1). The wave of excitation begins with the generation of electrical impulses within the SA node and spreads through the atria. The SA node is referred to as the pacemaker of the heart and exhibits automaticity, ie, it depolarizes and repolarizes spontaneously. The wave then excites sequentially the AV node the bundle of His, ie, the penetrating portion of the AV node the bundle branches, ie, the branching portions of the AV node the terminal Purkinje fibers and finally the ventricular myocardium. After the wave of excitation depolarizes these various stmetures of the heart, repolarization occurs so that each of the stmetures is ready for the next wave of excitation. Until repolarization occurs the stmetures are said to be refractory to excitation. During repolarization of the atria and ventricles, the muscles relax, allowing the chambers of the heart to fill with blood that is to be expelled with the next wave of excitation and resultant contraction. This process repeats itself 60—100 times or beats per minute... [Pg.111]


See other pages where Refractory time is mentioned: [Pg.408]    [Pg.3]    [Pg.408]    [Pg.3]    [Pg.87]    [Pg.121]    [Pg.144]    [Pg.228]    [Pg.305]    [Pg.314]    [Pg.338]    [Pg.412]    [Pg.116]    [Pg.126]    [Pg.54]    [Pg.59]    [Pg.427]    [Pg.171]    [Pg.465]    [Pg.351]    [Pg.164]    [Pg.31]    [Pg.32]    [Pg.41]    [Pg.55]    [Pg.56]    [Pg.56]    [Pg.57]    [Pg.201]    [Pg.201]    [Pg.522]    [Pg.577]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



© 2024 chempedia.info