Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference thermodynamic properties

References D. D. Wagman, et ah, The NBS Tables of Chemical Thermodynamic Properties, in J. Phys. Chem. Ref. Data, 11 2,1982 M. W. Chase, et ah, JANAF Thermochemical Tables, 3rd ed., American Chemical Society and the American Institute of Physics, 1986 (supplements to JANAF appear in J. Phys. Chem. Ref. Data) Thermodynamic Research Center, TRC Thermodynamic Tables, Texas A M University, College Station, Texas I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973 J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed.. Chapman and Hall, London, 1986 V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds, International Union of Pure and Applied Chemistry, Chemical Data Series No. 32, Blackwell, Oxford, 1985. [Pg.533]

The physical properties of the halogen fluorides are given in Table 1. Calculated thermodynamic properties can be found in Reference 24. [Pg.184]

Hypercompressors. In an LDPE plant a primary compressor, usually of two stages, is used to raise the pressure of ethylene to about 25—30 MPa and a secondary compressor, often referred to as a hypetcomptessot, is used to increase it to 150—315 MPa (22,000—45,700 psi). The thermodynamic properties of ethylene ate such that the secondary compressor requires only two stages and this results in a large pressure difference between the second stage suction and discharge pressures. [Pg.100]

Physical Properties. Pure, anhydrous lactic acid is a white, crystalline soHd with a low melting poiat. However, it is difficult to prepare the pure anhydrous form of lactic acid generally, it is available as a dilute or concentrated aqueous solution. The properties of lactic acid and its derivatives have been reviewed (6). A few important physical and thermodynamic properties from this reference are summarized ia Table 1. [Pg.511]

The physical properties of siUcon tetrahaUdes are Hsted in Table 1 those of the halohydrides are Hsted in Table 2. A more complex review of the physical properties of these chemicals is available (2). Detailed Hsts of properties of the colorless fuming Hquids, siUcon tetrachloride and trichlorosilane, are given in Table 3. A review of the physical and thermodynamic properties of siUcon tetrachloride is given in Reference 3. [Pg.17]

A study on the thermodynamic properties of the three SO phases is given in Reference 30. Table 1 presents a summary of the thermodynamic properties of pure sulfur trioxide. A signiftcandy lower value has been reported for the heat of fusion of y-SO, 24.05 kj /kg (5.75 kcal/kg) (41) than that in Table 1, as have slightly different critical temperature, pressure, and density values (32). [Pg.175]

The thermodynamic properties of sulfur trioxide, and of the oxidation reaction of sulfur dioxide are summarized in Tables 3 and 4, respectively. Thermodynamic data from Reference 49 are beheved to be more accurate than those of Reference 48 at temperatures below about 435°C. [Pg.176]

The physical and thermodynamic properties of carbon monoxide are well documented in a number of excellent summaries (1 8). The thermochemical data cited here are drawn predominantly from references 1—3 physical property data from reference 5. A summary of particularly useful physical constants is presented in Table 1. [Pg.48]

AH the foregoing faciUties form part of the spectmm of options that, in addition to the permanent system data bank, enable the engineer to get the most out of a flow-sheeting system. The following Hst shows the physical properties that are often required for process simulation. The methods of estimating these properties, when direct measurements are not available, are indicated in the references following the properties (also see Thermodynamic properties). [Pg.76]

Ethylene is the lightest olefin. It is a colorless, flammable gas with a slightly sweet odor. Physical and thermodynamic properties are given in many references (1 7), and are briefly summarized in Tables 1—3. [Pg.431]

The increasing ranges of pressure and temperature of interest to technology for an ever-increasing number of substances would necessitate additional tables in this subsection as well as in the subsec tion Thermodynamic Properties. Space restrictions preclude this. Hence, in the present revision, an attempt was made to update the fluid-compressibihty tables for selected fluids and to omit tables for other fluids. The reader is thus referred to the fourth edition for tables on miscellaneous gases at 0°C, acetylene, ammonia, ethane, ethylene, hydrogen-nitrogen mixtures, and methyl chloride. The reader is also... [Pg.184]

The values given in the following table for the heats and free energies of formation of inorganic compounds are derived from a) Bichowsky and Rossini, Thermochemistry of the Chemical Substances, Reinhold, New York, 1936 (h) Latimer, Oxidation States of the Elements and Their Potentials in Aqueous Solution, Prentice-Hall, New York, 1938 (c) the tables of the American Petroleum Institute Research Project 44 at the National Bureau of Standards and (d) the tables of Selected Values of Chemical Thermodynamic Properties of the National Bureau of Standards. The reader is referred to the preceding books and tables for additional details as to methods of calculation, standard states, and so on. [Pg.231]

As an example of how the approximate thermodynamic-property equations are handled in the inner loop, consider the calculation of K values. The approximate models for nearly ideal hquid solutions are the following empirical Clausius-Clapeyron form of the K value in terms of a base or reference component, b, and the definition of the relative volatility, Ot. [Pg.1288]

Nevertheless, previous developments and some of our results prove that the structural properties of several systems with short-range repulsive forces are straightforwardly and sufficiently accurately given by ROZ integral equations. Thermodynamic properties are much more difficult to describe. Reliable tools exist to obtain thermodynamics at high temperatures or for states far from phase transitions. Of particular importance, and far from being solved, are the issues related to phase transitions in partly quenched systems, even for simple models with attractive interactions. It seems that the results obtained by Kierlik et al. [27], may serve as a helpful reference in this direction. [Pg.342]

The second method can be applied to mixtures as well as pure components. In this method the procedure is to find the final temperature by trial, assuming a final temperature and checking by entropy balance (correct when ASp t, = 0). As reduced conditions are required for reading the tables or charts of generalized thermodynamic properties, the pseudo critical temperature and pressure are used for the mixture. Entropy is computed by the relation. See reference 61 for details. ... [Pg.390]

This model, which is sometimes referred to as the Fluctuating Gap Model (FGM) [42], has been used to study various aspects of quasi-one-dimensional systems. Examples arc the thermodynamic properties of quasi-one-dimensional organic compounds (NMP-TCNQ, TTF-TCNQ) [271, the effect of disorder on the Peierls transition [43, 44, and the effect of quantum lattice fluctuations on the optical spectrum of Peierls materials [41, 45, 46]. [Pg.364]

Again, therefore, all thermodynamic properties of a system in quantum statistics can be derived from a knowledge of the partition function, and since this is the trace of an operator, we can choose any convenient representation in which to compute it. The most fruitful application of this method is probably to the theory of imperfect gases, and is well covered in the standard reference works.23... [Pg.472]

Values taken from S. Glasstone. Thermodynamics for Chemists. D. Van Nostrand Company Inc., Toronto, p. 443 (1947). The values tabulated in this reference were taken from D. N. Craig and G. W. Vinal, J. Res. Natl. Bur. Stand.. Thermodynamic Properties of Sulfuric Acid Solutions and Their Relation to the Electromotive Force and Heat of Reaction of the Lead Storage Battery", 24, 475-490 (1940). More recent values at the higher molality can be found in W. F. Giauque. E. W. Hornung. J. E. Kunzler and T. R. Rubin, The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300° K", J. Am. Chem. Soc.. 82, 62-70 (1960). [Pg.382]

The form of equations (8.11) and (8.12) turns out to be general for properties near a critical point. In the vicinity of this point, the value of many thermodynamic properties at T becomes proportional to some power of (Tc - T). The exponents which appear in equations such as (8.11) and (8.12) are referred to as critical exponents. The exponent 6 = 0.32 0.01 describes the temperature behavior of molar volume and density as well as other properties, while other properties such as heat capacity and isothermal compressibility are described by other critical exponents. A significant scientific achievement of the 20th century was the observation of the nonanalytic behavior of thermodynamic properties near the critical point and the recognition that the various critical exponents are related to one another ... [Pg.395]

The kinetics of decomposition of these solids may be classified according to the process which has been identified as rate-limiting. This criterion allows a more concise presentation but is not completely satisfactory since some reactions show a sensitivity of behaviour to the conditions prevailing [1270]. Furthermore, certain of the reactions discussed are reversible. Reference to the extensive literature devoted to the thermodynamic properties of these solids and phase stabilities and interactions will only be made where kinetic observations or arguments have been used. [Pg.152]

Electrochemical cells can be constructed using an almost limitless combination of electrodes and solutions, and each combination generates a specific potential. Keeping track of the electrical potentials of all cells under all possible situations would be extremely tedious without a set of standard reference conditions. By definition, the standard electrical potential is the potential developed by a cell In which all chemical species are present under standard thermodynamic conditions. Recall that standard conditions for thermodynamic properties include concentrations of 1 M for solutes in solution and pressures of 1 bar for gases. Chemists use the same standard conditions for electrochemical properties. As in thermodynamics, standard conditions are designated with a superscript °. A standard electrical potential is designated E °. [Pg.1381]

For a detailed description of spectral map analysis (SMA), the reader is referred to Section 31.3.5. The method has been designed specifically for the study of drug-receptor interactions [37,44]. The interpretation of the resulting spectral map is different from that of the usual principal components biplot. The former is symmetric with respect to rows and columns, while the latter is not. In particular, the spectral map displays interactions between compounds and receptors. It shows which compounds are most specific for which receptors (or tests) and vice versa. This property will be illustrated by means of an analysis of data reporting on the binding affinities of various opioid analgesics to various opioid receptors [45,46]. In contrast with the previous approach, this application is not based on extra-thermodynamic properties, but is derived entirely from biological activity spectra. [Pg.402]

For any solution the three thermodynamic properties of major importance are the enthalpy, the entropy, and the free energy of the solution. Usually these properties are given for the formation of one mole of the solution at constant temperature and pressure, and they are referred to as integral thermodynamic properties. The free energy of mixing (AGM) is related to the corresponding enthalpies (AHM) and entropies (ASM) by the equation... [Pg.275]

The stability of a trivial assembly is simply determined by the thermodynamic properties of the discrete intermolecular binding interactions involved. Cooperative assembly processes involve an intramolecular cyclization, and this leads to an enhanced thermodynamic stability compared with the trivial analogs. The increase in stability is quantified by the parameter EM, the effective molarity of the intramolecular process, as first introduced in the study of intramolecular covalent cyclization reactions (6,7). EM is defined as the ratio of the binding constant of the intramolecular interaction to the binding constant of the corresponding intermolecular interaction (Scheme 2). The former can be determined by measuring the stability of the self-assembled structure, and the latter value is determined using simple monofunctional reference compounds. [Pg.215]

The purpose of this compilation is to tabulate the densities of compounds, hence only minimal description of experimental methods used to measure the density of liquids or solids appears. Detailed descriptions of methods for density determination of solids, liquids and gases, along with appropriate density reference standards, appear in a chapter by Davis and Koch in Physical Methods of Chemistry, Volume VI, Determination of Thermodynamic Properties [86-ros/bae],... [Pg.8]


See other pages where Reference thermodynamic properties is mentioned: [Pg.4763]    [Pg.4772]    [Pg.222]    [Pg.231]    [Pg.434]    [Pg.4763]    [Pg.4772]    [Pg.222]    [Pg.231]    [Pg.434]    [Pg.61]    [Pg.430]    [Pg.238]    [Pg.6]    [Pg.169]    [Pg.325]    [Pg.63]    [Pg.248]    [Pg.205]    [Pg.543]    [Pg.1247]    [Pg.1287]    [Pg.493]    [Pg.187]    [Pg.644]    [Pg.136]    [Pg.2]    [Pg.566]    [Pg.258]    [Pg.285]   


SEARCH



© 2024 chempedia.info