Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference electrodes liquid junction

Panel (c) shows typical results for the pH of rainwater. The average of the 17 measurements is given by the horizontal line at pH 4.14 and the letters s, t, u, v, w, x, y, and z identify types of pH electrodes. Types s and w had relatively large systematic errors. The type s electrode was a combination electrode (Figure 15-9) containing a reference electrode liquid junction with an exceptionally large area. Electrode type w had a reference electrode filled with a gel. [Pg.310]

Payne RB, Jones DP. Protein interferes with ionized calcium measurement at the reference electrode liquid junction, Ann Chn Biochem 1987 24 400-7. [Pg.1958]

KCl In order to preclude KCIO precipitates at the reference electrodes liquid junctions. The use of two Corning model 130 pH meters permitted simultaneous measurement of pH and free copper concentrations. Electrode calibrations demonstrated a Nernstlan response (within IZ of theoretical) for both pH and copper electrodes. Free ligand concentrations were varied by titrating our... [Pg.364]

When a constant ionic strength of the test solution is maintained and the reference electrode liquid bridge is filled with a solution of a salt whose cation and anion have similar mobilities (for example solutions of KCl, KNO3 and NH4NO3), the liquid-junction potential is reasonably constant (cf. p. 24-5). However, problems may be encountered in measurements on suspensions (for example in blood or in soil extracts). The potential difference measured in the suspension may be very different from that obtained in the supernatant or in the filtrate. This phenomenon is called the suspension (Pallmann) effect [110] The appearance of the Pallmann effect depends on the position of the reference electrode, but not on that of ISE [65] (i.e. there is a difference between the potentials obtained with the reference electrode in the suspension and in the supernatant). This effect has not been satisfactorily explained it may be caused by the formation of an anomalous liquid-junction or Donnan potential. It... [Pg.100]

TABLE 8.20 Potentials of Reference Electrodes in Volts as a Function of Temperature Liquid-junction potential included. [Pg.940]

Reference Electrodes and Liquid Junctions. The electrical cincuit of the pH ceU is completed through a salt bridge that usually consists of a concentrated solution of potassium chloride [7447-40-7]. The solution makes contact at one end with the test solution and at the other with a reference electrode of constant potential. The Hquid junction is formed at the area of contact between the salt bridge and the test solution. The mercury—mercurous chloride electrode, the calomel electrode, provides a highly reproducible potential in the potassium chloride bridge solution and is the most widely used reference electrode. However, mercurous chloride is converted readily into mercuric ion and mercury when in contact with concentrated potassium chloride solutions above 80°C. This disproportionation reaction causes an unstable potential with calomel electrodes. Therefore, the silver—silver chloride electrode and the thallium amalgam—thallous chloride electrode often are preferred for measurements above 80°C. However, because silver chloride is relatively soluble in concentrated solutions of potassium chloride, the solution in the electrode chamber must be saturated with silver chloride. [Pg.466]

However, in the case of stress-corrosion cracking of mild steel in some solutions, the potential band within which cracking occurs can be very narrow and an accurately known reference potential is required. A reference half cell of the calomel or mercury/mercurous sulphate type is therefore used with a liquid/liquid junction to separate the half-cell support electrolyte from the process fluid. The connections from the plant equipment and reference electrode are made to an impedance converter which ensures that only tiny currents flow in the circuit, thus causing the minimum polarisation of the reference electrode. The signal is then amplifled and displayed on a digital voltmeter or recorder. [Pg.33]

Electrode Potential (E) the difference in electrical potential between an electrode and the electrolyte with which it is in contact. It is best given with reference to the standard hydrogen electrode (S.H.E.), when it is equal in magnitude to the e.m.f. of a cell consisting of the electrode and the S.H.E. (with any liquid-junction potential eliminated). When in such a cell the electrode is the cathode, its electrode potential is positive when the electrode is the anode, its electrode potential is negative. When the species undergoing the reaction are in their standard states, E =, the stan-... [Pg.1367]

An element of uncertainty is introduced into the e.m.f. measurement by the liquid junction potential which is established at the interface between the two solutions, one pertaining to the reference electrode and the other to the indicator electrode. This liquid junction potential can be largely eliminated, however, if one solution contains a high concentration of potassium chloride or of ammonium nitrate, electrolytes in which the ionic conductivities of the cation and the anion have very similar values. [Pg.549]

One way of overcoming the liquid junction potential problem is to replace the reference electrode by an electrode composed of a solution containing the same cation as in the solution under test, but at a known concentration, together with a rod of the same metal as that used in the indicator electrode in other words we set up a concentration cell (Section 2.29). The activity of the metal ion in the solution under test is given by... [Pg.549]

In view of the problems referred to above in connection with direct potentiometry, much attention has been directed to the procedure of potentio-metric titration as an analytical method. As the name implies, it is a titrimetric procedure in which potentiometric measurements are carried out in order to fix the end point. In this procedure we are concerned with changes in electrode potential rather than in an accurate value for the electrode potential with a given solution, and under these circumstances the effect of the liquid junction potential may be ignored. In such a titration, the change in cell e.m.f. occurs most rapidly in the neighbourhood of the end point, and as will be explained later (Section 15.18), various methods can be used to ascertain the point at which the rate of potential change is at a maximum this is at the end point of the titration. [Pg.549]

The most widely used reference electrode, due to its ease of preparation and constancy of potential, is the calomel electrode. A calomel half-cell is one in which mercury and calomel [mercury(I) chloride] are covered with potassium chloride solution of definite concentration this may be 0.1 M, 1M, or saturated. These electrodes are referred to as the decimolar, the molar and the saturated calomel electrode (S.C.E.) and have the potentials, relative to the standard hydrogen electrode at 25 °C, of 0.3358,0.2824 and 0.2444 volt. Of these electrodes the S.C.E. is most commonly used, largely because of the suppressive effect of saturated potassium chloride solution on liquid junction potentials. However, this electrode suffers from the drawback that its potential varies rapidly with alteration in temperature owing to changes in the solubility of potassium chloride, and restoration of a stable potential may be slow owing to the disturbance of the calomel-potassium chloride equilibrium. The potentials of the decimolar and molar electrodes are less affected by change in temperature and are to be preferred in cases where accurate values of electrode potentials are required. The electrode reaction is... [Pg.551]

Some commercial electrodes are supplied with a double junction. In such arrangements, the electrode depicted in Fig. 15.1(h) is mounted in a wider vessel of similar shape which also carries a porous disc at the lower end. This outer vessel may be filled with the same solution (e.g. saturated potassium chloride solution) as is contained in the electrode vessel in this case the main function of the double junction is to prevent the ingress of ions from the test solution which may interfere with the electrode. Alternatively, the outer vessel may contain a different solution from that involved in the electrode (e.g. 3M potassium nitrate or 3M ammonium nitrate solution), thus preventing chloride ions from the electrode entering the test solution. This last arrangement has the disadvantage that a second liquid junction potential is introduced into the system, and on the whole it is preferable wherever possible to choose a reference electrode which will not introduce interferences. [Pg.553]

For an electrochemical cell consisting of a metal at the potential of zero charge in a solution of surface-inactive electrolyte and a reference electrode (let us assume that any liquid junction potential can be neglected), the electrode potential is given by (cf. Eq. (20)]... [Pg.19]

A typical set of experimental data290a,290b is shown in Fig. 11. All measurements converge to the value measured by Grahame.286 At present, the of Hg in water can be confidently indicated5 as -0.433 0.001 V (SCE), i.e., -0.192 0.001 V (SHE). The residual uncertainty is related to the unknown liquid junction potential at the boundary with the SCE, which is customarily used as a reference electrode. The temperature coefficient of of the Hg/H20 interface has been measured and its significance discussed.7,106,1 8,291... [Pg.57]

Sometimes the term normal hydrogen electrode (and respectively normal potential instead of standard potential) has been used referring to a hydrogen electrode with a platinized platinum electrode immersed in 1 M sulfuric acid irrespectively of the actual proton activity in this solution. With the latter electrode poorly defined diffusion (liquid junction) potentials will be caused, thus data obtained with this electrode are not included. The term normal hydrogen electrode should not be used either, because it implies a reference to the concentration unit normal which is not to be used anymore, see also below. [Pg.411]

The same reference electrode can be used to characterize electrodes in contact with different electrolytes therefore, the cell used to determine the electrode potential often includes a liquid junction (electrolyte-electrolyte interface). In this case the electrode potential is understood as being the corrected OCV value, which is the value for this cell after elimination of the hquid-junction potential. For instance, for the zinc electrode (2. b), the expression for the electrode potential can be written as... [Pg.29]

A representative ISE is shown schematically in Fig. 1. The electrode consists of a membrane, an internal reference electrolyte of fixed activity, (ai)i , ai and an internal reference electrode. The ISE is immersed in sample solution that contains analyte of some activity, (ajXampie and into which an external reference electrode is also immersed. The potential measured by the pH/mV meter (Eoe,) is equal to the difference in potential between the internal (Eraf.int) and external (Eref.ext) reference electrodes, plus the membrane potential (E emb), plus the liquid junction potential... [Pg.4]

In potentiometric measurements the simplest approach to the liquid-junction problem is to use a reference electrode containing a saturated solution of potassium chloride, for example the saturated calomel electrode (p. 177). The effect of the diffusion potential is completely suppressed if the solutions in contact contain the same indifferent electrolyte in a sufficient... [Pg.125]

Covington, A. K., and M. J. F. Rebello, Reference electrodes and liquid junction effect in ion-selective electrode potentiometry, lon-Sel. Electrode Revs., 5, 93 (1983)... [Pg.131]

For current practice, the described method of pH measurement is too tedious. Moreover, not hydrogen but glass electrodes are used for routine pH measurements (see Section 6.3). Then the expression for the EMF of the cell consisting of the glass and reference electrodes contains a constant term from Eq. (6.3.10), in addition to the terms present in Eq. (3.3.3) this term must be obtained by calibration. Further, a term describing the liquid junction potential between the reference electrode and the measured solution must also be included. [Pg.204]

The membrane phase m is a solution of hydrophobic anion Ax (ion-exchanger ion) and cation Bx+ in an organic solvent that is immiscible with water. Solution 1 (the test aqueous solution) contains the salt of cation Bx+ with the hydrophilic anion A2. The Gibbs transfer energy of anions Ax and A2 is such that transport of these anions into the second phase is negligible. Solution 2 (the internal solution of the ion-selective electrode) contains the salt of cation B with anion A2 (or some other similar hydrophilic anion). The reference electrodes are identical and the liquid junction potentials A0L(1) and A0L(2) will be neglected. [Pg.437]

Y. Mi, S. Mathison, and E. Bakker, Polyion sensors as liquid junction-free reference electrodes. J. Electrochem. Soc. 2, 198-200 (1999). [Pg.133]


See other pages where Reference electrodes liquid junction is mentioned: [Pg.37]    [Pg.2342]    [Pg.223]    [Pg.87]    [Pg.37]    [Pg.2342]    [Pg.223]    [Pg.87]    [Pg.360]    [Pg.119]    [Pg.5]    [Pg.490]    [Pg.942]    [Pg.475]    [Pg.476]    [Pg.491]    [Pg.1120]    [Pg.147]    [Pg.23]    [Pg.33]    [Pg.58]    [Pg.207]    [Pg.45]    [Pg.57]    [Pg.59]    [Pg.31]    [Pg.199]    [Pg.363]    [Pg.372]    [Pg.108]   
See also in sourсe #XX -- [ Pg.55 , Pg.56 , Pg.57 , Pg.58 ]




SEARCH



Liquid reference

Reference electrodes

© 2024 chempedia.info