Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potentials transition metal complexes

Back electron transfer takes place from the electrogenerated reduc-tant to the oxidant near the electrode surface. At a sufficient potential difference this annihilation leads to the formation of excited ( ) products which may emit light (eel) or react "photochemical ly" without light (1,16). Redox pairs of limited stability can be investigated by ac electrolysis. The frequency of the ac current must be adjusted to the lifetime of the more labile redox partner. Many organic compounds have been shown to undergo eel (17-19). Much less is known about transition metal complexes despite the fact that they participate in fljjany redox reactions. [Pg.160]

Like all controlled radical polymerization processes, ATRP relies on a rapid equilibration between a very small concentration of active radical sites and a much larger concentration of dormant species, in order to reduce the potential for bimolecular termination (Scheme 3). The radicals are generated via a reversible process catalyzed by a transition metal complex with a suitable redox manifold. An organic initiator (many initiators have been used but halides are the most common), homolytically transfers its halogen atom to the metal center, thereby raising its oxidation state. The radical species thus formed may then undergo addition to one or more vinyl monomer units before the halide is transferred back from the metal. The reader is directed to several comprehensive reviews of this field for more detailed information. [Pg.20]

While these spectroscopic and redox properties alone would be sufficient for direct use of transition metal complexes in solution-phase ECDs, polymeric systems based on coordination complex monomer units, which have potential use in all-solid-state systems, have also been investigated. [Pg.583]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

When interaction between the metal-based components is weak, polynuclear transition metal complexes belong to the field of supramolecular chemistry. At the roots of supramolecular chemistry is the concept that supramolecular species have the potential to achieve much more elaborated tasks than simple molecular components while a molecular component can be involved in simple acts, supramolecular species can performIn other words, supramolecular species have the potentiality to behave as molecular devices. Particularly interesting molecular devices are those which use light to achieve their functions. Molecular devices which perform light-induced functions are called photochemical molecular devices (PMD). Luminescent and redox-active polynuclear complexes as those described in this chapter can play a role as PMDs operating by photoinduced energy and electron transfer processes. ... [Pg.109]

The reliable prediction of redox potentials as a function of composition is useful in the synthetic design and application of technetium and other transition metal complexes. A parametric procedure for doing so on the basis of ligand additivity principles has been developed by Lever [28]. Lu etal. [29] used this scheme to correlateTc / ",Tc "/ , andTc hi potentials with the composition of octahedral technetium complexes containing halide, nitrogen, and phosphorus donor ligands. The results are illustrated in Fig. 2 [29], where the observed potentials are plotted according to... [Pg.436]

The first borinate-transition metal complex to be prepared was actually the first known derivative of borin. Bis(cyclopentadienide)cobalt (94) reacts with organic halides and was analogously found to react with boron halides in a redox reaction to give (95), followed by an insertion to yield (cyclopentadienide)(borinato)cobalt (97) (72CB3413). The product composition depends on the ratio of reactants. Compound (97) is the main product (80% yield when R = Ph, X = Br) when the molar ratio between (94) and the boron halide is 2.5 1. A second and slower insertion occurs to give (28) when (97) is treated with another equivalent of the boron halide (Scheme 13). Compounds (28), (29) and (97) have one electron more than predicted by the 187r-electron rule for transition metal complexes. They are red in colour and, of course, paramagnetic. The mixed complexes (97) are thermally labile, in contrast to (28) and (29), which can be heated to 180 °C and sublimed at 90 °C. Their ionization potentials are low and the complexes are sensitive to air. [Pg.644]

For some transition metal complexes, the metal redox processes intervene between the ring redox. For instance, Mniu/n, Felll/n/1, Co1I1/n/1 and NiHI/n couples are usually observed between the first ring redox potentials. [Pg.847]

The ring redox potentials for the transition metal complexes are similar to those of the main group with the metal atom at the same oxidation state and of analogous size. The effect of Pc peripheral substitution is small and usually less than 0.1 V unless the substituent is charged. [Pg.870]

The kinetics of oxidation and reduction of [4Fe-4S] proteins by transition metal complexes and by other electron-transfer proteins have been studied. These reactions do not correlate with their redox potentials.782 The charge on the cluster is distributed on the surface of HiPIP through the hydrogen bond network, and so affects the electrostatic interaction between protein and redox agents such as ferricyanide, Co111 and Mnin complexes.782 783 In some cases, limiting kinetics were observed, showing the presence of association prior to electron transfer.783... [Pg.631]

For efficient regeneration, the catalyst should form only labile intermediates with the substrate. This concept can be realized using transition metal complexes because metal-ligand bonds are generally weaker than covalent bonds. The transition metals often exist in different oxidation states with only moderate differences in their oxidation potentials, thus offering the possibility of switching reversibly between the different oxidation states by redox reactions. [Pg.1]

In recent years there has been a considerable amount of research on transition metal complexes due to the large number of potential or already realized technical applications such as solar energy conversion through photo-redox processes, optical information and storage systems, photolithographic processes, etc. Moreover, metal complexes are also of considerable importance in biology and medicine. Most of these applications are directly related to the electronic and vibronic properties of the ground and lowest excited states. [Pg.217]

In organic molecules there is generally a great separation between oxidation states, so that an excited organic molecule can usually serve as either an electron donor or an electron acceptor but not both. In transition metal complexes the presence of redox sites on both metal and ligand offers additional possibilities not available to either simple metal ions or organic molecules. The oxidation states are often closely spaced, so that the case is very common in which an excited state can be used as both an electron donor and an electron acceptor. As can be seen from Fig. 7, when the oxidation and reduction potentials of a molecule are close enough,... [Pg.13]

Two factors are important in determining the relative values of kd and fce-the oxidation potential of the catalyst and its Lewis acidity. In general, the ease with which transition metal complexes catalyze the decomposition of hydroperoxides is related to their redox potentials (see Table V). Hydroperoxides are strong oxidants but weak reducing agents. Hence, reaction (312) is the slower,... [Pg.346]

The observations illustrate that inelastic and thermally activated tunnel channels may apply to metalloproteins and large transition metal complexes. The channels hold perspectives for mapping protein structure, adsorption and electronic function at metallic surfaces. One observation regarding the latter is, for example that the two electrode potentials can be varied in parallel, relative to a common reference electrode potential, at fixed bias potential. This is equivalent to taking the local redox level up or down relative to the Fermi levels (Fig. 5.6a). If both electrode potentials are shifted negatively, and the redox level is empty (oxidized), then the current at first rises. It reaches a maximum, convoluted with the bias potential between the two Fermi levels, and then drops as further potential variation takes the redox level below the Fermi level of the positively biased electrode. The relation between such current-voltage patterns and other three-level processes, such as molecular resonance Raman scattering [76], has been discussed [38]. [Pg.149]

An early review by Koelle on transition metal catalyzed proton reduction nicely developed the various chemical steps involved in hydrogen evolution including metal hydride formation, hydride acidity (basicity) and protonation and requisite redox potentials.284 The complexes review here have little structural relevance to the hy-drogenase active sites but many show promising catalytic activity. More recently... [Pg.153]

To induce this reversible termination, ATRP employs a transition metal complex with sufficient redox potential to deactivate propagating radicals. A halide atom, typically Cl or Br, is transferred reversibly (hence the name atom transfer ) to the metal complex. In the process the metal alternates between a lower and higher oxidation state. A general mechanism is shown in Scheme 5. [Pg.224]


See other pages where Redox potentials transition metal complexes is mentioned: [Pg.1903]    [Pg.677]    [Pg.395]    [Pg.196]    [Pg.51]    [Pg.312]    [Pg.588]    [Pg.309]    [Pg.215]    [Pg.269]    [Pg.239]    [Pg.122]    [Pg.73]    [Pg.113]    [Pg.208]    [Pg.274]    [Pg.8]    [Pg.36]    [Pg.269]    [Pg.328]    [Pg.122]    [Pg.311]    [Pg.313]    [Pg.345]    [Pg.208]    [Pg.53]    [Pg.355]    [Pg.265]    [Pg.1245]    [Pg.144]    [Pg.1171]   


SEARCH



Complex potential

Metal potential

Metals redox potentials

Redox metal

Redox metal complexes

Redox potential complexes

Redox potentials

© 2024 chempedia.info