Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recycling oxidation rates

It should be noted that the metal ion may enhance the oxidation rate of the substrate without being a real catalyst. In this case the oxidation of the substrate becomes faster because of the formation of reactive species in Eqs. (3) and (4), but Eq. (5) does not occur and the metal ion is not recycled to its original oxidation state. Consequently, the catalyst quickly loses its activity over the course of the reaction. [Pg.398]

If the NO concentration is appreciable, the efficiency of trace gas oxidation (free radical chain length) is high for this species, In remote air masses, very low NO concentrations limit recycling of HO, and the HO oxidation rate approaches the prime HO generation rate, for instance by these reactions ... [Pg.333]

There are challenges that remain for optimization of the Pd-(-)-sparteine-catalyzed asymmetric oxidation of secondary alcohols—including accelerating the relatively slow reaction rate, finding a general method for recycling oxidized product, and using air rather than 02 as oxidant in all cases. Nonetheless, this... [Pg.549]

Using a batch recycle mode, oily wastewater was treated in the photoassisted advanced oxidation systems. Their results indicated that UV/H2O2 oxidized oily compounds into organic acids with the efficiency being greater at acidic pH. The oxidation rate was enhanced in the presence of Fe " ". [Pg.45]

Nevertheless, the use of a supported noble metal catalyst (usually Pt) for soot oxidation under loose contact conditions (proposed to be closer to the practical condition) results in a significant decrease in the soot oxidation temperature.76,94,97,98 Thus, incorporation of the soot in a Pt/SiC foam catalyst allows the soot oxidation rate to be doubled (and also to decrease the maximum rate temperature) with respect to a non-catalysed situation in which the soot is incorporated into the Pt-free SiC foam (with Pt/SiC foam located upstream to promote NO oxidation). In turn, a considerable decrease in the maximum rate temperature is observed when employing NO + O2 instead of O2 as oxidant in the Pt/SiC-soot configuration.98 On the basis mainly of these results, a catalytic role for NO is proposed in a recycle reaction as follows ... [Pg.301]

The fresh feed to the process was 0.5 kmole/h of O2 and an excess methanol. All of the O2 reacts in the reactor. Formaldehyde and water are removed from the product stream first, after which H2 is removed from the recycled methanol. The recycle flow rate of methanol was 1 kmole/h. The ratio of methanol reacting by decomposition to that by oxidation was 3. Draw the flow diagram and then calculate the per pass conversion of methanol in the reactor and the fresh feed rate of methanol. [Pg.183]

The problem of distillation control was addressed in Chapter 8. The issue now is how to control the reactor liquid level, the recycle tank liquid level, the recycle flow rate, the ethylene oxide feed flow rate, and the water feed flow rate. [Pg.242]

This control scheme is more robust in the event of a disturbance. The flow rate of the stream to the recycle pump is controlled, preventing any increases in the recycle flow rate. The recycle tank level is controlled by the water feed flow rate. The reactor is still under level control by manipulating the flow rate of the liquid stream leaving the reactor. The ethylene oxide feed flow rate is also manipulated by a composition controller, which measures the exit composition of ethylene oxide from the reactor. This control scheme does not allow for excess ethylene oxide or for excess water in the system, and hence this system cannot snowball. [Pg.244]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Acetaldehyde can be used as an oxidation-promoter in place of bromine. The absence of bromine means that titanium metallurgy is not required. Eastman Chemical Co. has used such a process, with cobalt as the only catalyst metal. In that process, acetaldehyde is converted to acetic acid at the rate of 0.55—1.1 kg/kg of terephthahc acid produced. The acetic acid is recycled as the solvent and can be isolated as a by-product. Reaction temperatures can be low, 120—140°C, and residence times tend to be high, with values of two hours or more (55). Recovery of dry terephthahc acid follows steps similar to those in the Amoco process. Eastman has abandoned this process in favor of a bromine promoter (56). Another oxidation promoter which has been used is paraldehyde (57), employed by Toray Industries. This leads to the coproduction of acetic acid. 2-Butanone has been used by Mobil Chemical Co. (58). [Pg.488]

The reaction is exothermic reaction rates decrease with increased carbon number of the oxide (ethylene oxide > propylene oxide > butylene oxide). The ammonia—oxide ratio determines the product spht among the mono-, di-, and trialkanolamines. A high ammonia to oxide ratio favors monoproduction a low ammonia to oxide ratio favors trialkanolamine production. Mono- and dialkanolamines can also be recycled to the reactor to increase di-or trialkanolamine production. Mono- and dialkanolamines can also be converted to trialkanolamines by reaction of the mono- and di- with oxide in batch reactors. In all cases, the reaction is mn with excess ammonia to prevent unreacted oxide from leaving the reactor. [Pg.7]

Bubble columns in series have been used to establish the same effective mix of plug-flow and back-mixing behavior required for Hquid-phase oxidation of cyclohexane, as obtained with staged reactors in series. WeU-mixed behavior has been established with both Hquid and air recycle. The choice of one bubble column reactor was motivated by the need to minimize sticky by-products that accumulated on the walls (93). Here, high air rate also increased conversion by eliminating reaction water from the reactor, thus illustrating that the choice of a reactor system need not always be based on compromise, and solutions to production and maintenance problems are complementary. Unlike the Hquid in most bubble columns, Hquid in this reactor was intentionally weU mixed. [Pg.524]

Catalyst lifetime for contemporary ethylene oxide catalysts is 1—2 years, depending on the severity of service, ie, ethylene oxide production rate and absence of feed poisons, primarily sulfur compounds. A large percentage (>95%) of the silver in spent catalysts can be recovered and recycled the other components are usually discarded because of thek low values. [Pg.202]

The RR developed by the author at UCC was the only one that had a high recycle rate with a reasonably known internal flow (Berty, 1969). This original reactor was named later after the author as the Berty Reactor . Over five hundred of these have been in use around the world over the last 30 years. The use of Berty reactors for ethylene oxide process improvement alone has resulted in 300 million pounds per year increase in production, without addition of new facilities (Mason, 1966). Similar improvements are possible with many other catalytic processes. In recent years a new blower design, a labyrinth seal between the blower and catalyst basket, and a better drive resulted in an even better reactor that has the registered trade name of ROTOBERTY . ... [Pg.280]

The subsequent fate of the assimilated carbon depends on which biomass constituent the atom enters. Leaves, twigs, and the like enter litterfall, and decompose and recycle the carbon to the atmosphere within a few years, whereas carbon in stemwood has a turnover time counted in decades. In a steady-state ecosystem the net primary production is balanced by the total heterotrophic respiration plus other outputs. Non-respiratory outputs to be considered are fires and transport of organic material to the oceans. Fires mobilize about 5 Pg C/yr (Baes et ai, 1976 Crutzen and Andreae, 1990), most of which is converted to CO2. Since bacterial het-erotrophs are unable to oxidize elemental carbon, the production rate of pyroligneous graphite, a product of incomplete combustion (like forest fires), is an interesting quantity to assess. The inability of the biota to degrade elemental carbon puts carbon into a reservoir that is effectively isolated from the atmosphere and oceans. Seiler and Crutzen (1980) estimate the production rate of graphite to be 1 Pg C/yr. [Pg.300]

This paper reviews recycling technologies of PMMA waste, its applications and its markets. It relates in detail experimentation on thermal and oxidative depolymerisation of PMMA scrap, under nitrogen and oxygen atmospheres, at different heating rates by thermogravimetry and differential scanning calorimetry techniques. 15 refs. [Pg.76]


See other pages where Recycling oxidation rates is mentioned: [Pg.105]    [Pg.612]    [Pg.171]    [Pg.371]    [Pg.273]    [Pg.563]    [Pg.391]    [Pg.120]    [Pg.538]    [Pg.138]    [Pg.234]    [Pg.23]    [Pg.101]    [Pg.211]    [Pg.122]    [Pg.735]    [Pg.75]    [Pg.273]    [Pg.416]    [Pg.216]    [Pg.50]    [Pg.91]    [Pg.415]    [Pg.458]    [Pg.314]    [Pg.418]    [Pg.126]    [Pg.128]    [Pg.388]    [Pg.163]    [Pg.538]    [Pg.546]    [Pg.274]    [Pg.430]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Recycle rate

© 2024 chempedia.info