Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recrystallisation temperature

Yield stress -(MN/m ) 6 UTS (MN/m ) Modulus of eiasticity (GN/m ) Poisson s Hardness ratio (VPN) Resistance to thermal shock Workability (ductile to brittle trans. temp.)( C) Recrystallisation temperature Stress relieving temperature ... [Pg.853]

Alloys with rhenium, another high melting point metal (3180°C) exhibit outstanding high temperature properties insofar as they have a higher recrystallisation temperature than pure tungsten and are still ductile in the recrystallised condition. Common alloys with rhenium contain 3%, 5% or 26% rhenium. The 3% and 5% alloys combine ductility with reasonable... [Pg.916]

The first series of experiments was devoted to determination of the effect scale on the slit temperature. In the second series of experiments we used the slits formed by massive plates of gold-silver alloy and pure palladium, varying considerably their microstructure. Namely, they were initially highly cold-hardened samples and later on the ones annealed at the recrystallisation temperature. In other words, we deal with either fine-grained or coarse-grained metal surfaces. [Pg.362]

The crystallinity is promoted by the mica addition (mica is, just like talc and carbon black acting as a nucleating agent for PP, see Chapter 1.3.2). This effect is also detected by an increase of the DSC recrystallisation temperature (Tc-value) from 108°C to 120°C for the UHMW-PP and from 106°C to 12l°C for the standard J-grade system. [Pg.350]

Recrystallisation temperature on slow cooling of the melt between 115 °C and 135 °C. [Pg.26]

Recrystallisation temperature is quite important for injection moulding. Since the recrystallisation temperature of PP is between 115-135 °C, most of the crystallisation occurs during the cooling of the artefact in the mould. Since the recommended mould... [Pg.26]

Examination by neutron and X-ray diffraction showed no detectable crystalline fraction. The recrystallisation temperature, as checked by differential thermoanalysis, is 640 K. The sample was hydrogenated by exposing it to 47.7 bar H2 gas at 373 K within the QNS aluminium sample holder, which was sealed after thermal equilibrium was reached. The resulting composition was Pdg Si2QH2 at 373 K and 130 20 2 9 according to pressure com-... [Pg.274]

Place 0 5 ml. of acetone, 20 ml. of 10% aqueous potassium iodide solution and 8 ml. of 10% aqueous sodium hydroxide solution in a 50 ml. conical flask, and then add 20 ml. of a freshly prepared molar solution of sodium hypochlorite. Well mix the contents of the flask, when the yellow iodoform will begin to separate almost immediately allow the mixture to stand at room temperature for 10 minutes, and then filter at the pump, wash with cold w ater, and drain thoroughly. Yield of Crude material, 1 4 g. Recrystallise the crude iodoform from methylated spirit. For this purpose, place the crude material in a 50 ml. round-bottomed flask fitted with a reflux water-condenser, add a small quantity of methylated spirit, and heat to boiling on a water-bath then add more methylated spirit cautiously down the condenser until all the iodoform has dissolved. Filter the hot solution through a fluted filter-paper directly into a small beaker or conical flask, and then cool in ice-water. The iodoform rapidly crystallises. Filter at the pump, drain thoroughly and dry. [Pg.92]

Prepare two solutions, one containing i g. of diphenylamine in 8 ml. of warm ethanol, and the other containing 0-5 g. of sodium nitrite in i ml. of water, and cool each solution in ice-water until the temperature falls to 5°. Now add o 8 ml. of concentrated hydrochloric acid steadily with stirring to the diphenylamine solution, and then without delay (otherwise diphenylamine hydrochloride may crystallise out) pour the sodium nitrite solution rapidly into the weil-stirred mixture. The temperature rises at once and the diphenylnitrosoamine rapidly crystallises out. Allow the mixture to stand in the ice-water tor 15 minutes, and then filter off the crystals at the pump, drain thoroughly, wash with water to remove sodium chloride, and then drain again. Recrystallise from methylated spirit. Diphenylnitrosoamine is thus obtained as very pale yellow crystals, m.p. 67 68° yield, 0 9-1 o g. [Pg.204]

Cyclohexanone oxime. Add 20 g. (21 ml.) of cyclohexanone to a solution of 17 g. of hydroxylamine hydrochloride in 40 ml. of water, and cool the mixture in ice-water. Add a solution of 13 g. of anhydrous sodium carbonate in 40 ml. of water slowly to the mixture, stirring the latter with a 100° thermometer, and maintaining the temperature of the mixture at 20-25° meanwhile. The oxime rapidly separates. Stir the complete mixture at intervals, and after 10 minutes filter the oxime at the pump, drain thoroughly and dry it in a (vacuum) desiccator. Yield of crude oxime, 20 g. Recrystallise from petroleum (b.p. 100-120 ) and dry over paraffin wax (p. 19). Yield of pure oxime, 16 g., m.p. 88°. [Pg.228]

Assemble in a fume-cupboard the apparatus shown in Fig. 67(A). Place 15 g. of 3,5-dinitrobenzoic acid and 17 g. of phosphorus pentachloride in the flask C, and heat the mixture in an oil-bath for hours. Then reverse the condenser as shown in Fig. 67(B), but replace the calcium chloride tube by a tube leading to a water-pump, the neck of the reaction-flask C being closed with a rubber stopper. Now distil off the phosphorus oxychloride under reduced pressure by heating the flask C in an oil-bath initially at 25-30, increasing this temperature ultimately to 110°. Then cool the flask, when the crude 3,5-dinitro-benzoyl chloride will solidify to a brown crystalline mass. Yield, 16 g., i.e,y almost theoretical. Recrystallise from caibon tetrachloride. The chloride is obtained as colourless crystals, m.p. 66-68°, Yield, 13 g Further recrystallisation of small quantities can be performed using petrol (b.p. 40-60°). The chloride is stable almost indefinitely if kept in a calcium chloride desiccator. [Pg.243]

Dissolve 10 g. of chloro- 2,4-dinitrobenzenet in 50 ml. of dioxan in a 250 ml. conical flask. Dilute 8 ml. of hydrazine hydrate with an equal volume of water and add this slowly with shaking to the dioxan solution, keeping the temperature between zo " and 25°. Heat under reflux for 10 minutes to complete the reaction and then add 5 ml. of ethanol and heat again for 5 minutes. Cool and filter oflF the orange 2,4-dinitrophenylhydra-zine. Recrystallise the dry product from ethyl acetate m.p. 200° (decomp.). Yield, 7 g. [Pg.263]

Mix 6 2 ml. (6 4 g.) of pure ethyl acetoacetate and 5 ml. of pure phenylhydrazine in an evaporating-basin of about 75 ml. capacity, add 0 5 ml. of acetic acid and then heat the mixture on a briskly boiling water-bath (preferably in a fume-cupboard) for I hour, occasionally stirring the mixture with a short glass rod. Then allow the heavy yellow syrup to cool somewhat, add 30-40 ml. of ether, and stir the mixture vigorously the syrup may now dissolve and the solution shortly afterwards deposit the crystalline pyrazolone, or at lower temperatures the syrup may solidify directly. Note. If the laboratory has been inoculated by previous preparations, the syrup may solidify whilst still on the water-bath in this case the solid product when cold must be chipped out of the basin, and ground in a mortar with the ether.) Now filter the product at the pump, and wash the solid material thoroughly with ether. Recrystallise the product from a small quantity of a mixture of equal volumes of water and ethanol. The methyl-phenyl-pyrazolone is obtained... [Pg.271]

Gently warm a mixture of 32 g. (32 ml.) of ethyl acetoacetate and 10 g. of aldehyde-ammonia in a 400 ml. beaker by direct heating on a gauze, stirring the mixture carefully with a thermometer. As soon as the reaction starts, remove the heating, and replace it when the reaction slackens, but do not allow the temperature of the mixture to exceed 100-no the reaction is rapidly completed. Add to the mixture about twice its volume of 2A -hydrochloric acid, and stir the mass until the deposit either becomes solid or forms a thick paste, according to the quality of the aldehyde-ammonia employed. Decant the aqueous acid layer, repeat the extraction of the deposit with more acid, and again decant the acid, or filter off the deposit if it is solid. Transfer the deposit to a conical flask and recrystallise it twice from ethanol (or methylated spirit) diluted with an equal volume of water. The i,4-dihydro-collidine-3,5-dicarboxylic diethyl ester (I) is obtained as colourless crystals, m.p. 130-131°. Yield 12 5 g,... [Pg.296]

The theory underlying the removal of impurities by crystaUisation may be understood from the following considerations. It is assumed that the impurities are present in comparatively small proportion—usually less than 5 per cent, of the whole. Let the pure substance be denoted by A and the impurities by B, and let the proportion of the latter be assumed to be 5 per cent. In most instances the solubilities of A (SJ and of B (/Sb) are different in a particular solvent the influence of each compound upon the solubility of the other will be neglected. Two cases will arise for an3 particular solvent (i) the impurity is more soluble than the compound which is being purified (/Sg > SA and (ii) the impurity is less soluble than the compound Sg < S ). It is evident that in case (i) several recrystallisations will give a pure sample of A, and B will remain in the mother liquors. Case (ii) can be more clearly illustrated by a specific example. Let us assume that the solubility of A and 5 in a given solvent at the temperature of the laboratory (15°) are 10 g. and 3 g. per 100 ml. of solvent respectively. If 50 g. of the crude material (containing 47 5 g. of A and 2-5 g. of B) are dissolved in 100 ml. of the hot solvent and the solution allowed to cool to 15°, the mother liquor will contain 10 g. of A and 2-5 g. (i.e., the whole) of B 37-5 g. of pure crystals of A will be obtained. [Pg.123]

The most desirable characteristics of a solvent for recrystalhsation are (a) a high solvent power for the substance to be purified at elevated temperatures and a comparatively low solvent power at the laboratory temperature or below (6) it should dissolve the impurities readily or to only a very small extent (c) it should yield well-formed crystals of the purified compound and (d) it must be capable of easy removal from the crystals of the purified compound, i.e., possess a relatively low boiling point. It is assumed, of course, that the solvent does not react chemically with the substance to be purified. If two or more solvents appear to be equally suitable for the recrystallisation, the final selection will depend upon such factors as ease of manipulation, inflammability and cost. [Pg.123]

If the substance is found to be far too soluble in one solvent and much too insoluble in another solvent to allow of satisfactory recrystallisation, mixed solvents or solvent pairs may frequently be used with excellent results. The two solvents must, of course, be completely miscible. Recrystallisation from mixed solvents is carried out near the boiling point of the solvent. The compound is dissolved in the solvent in which it is very soluble, and the hot solvent, in which the substance is only sparingly soluble, is added cautiously until a slight turbidity is produced. The turbidity is then just cleared by the addition of a small quantity of the first solvent and the mixture is allowed to cool to room temperature crystals will separate. Pairs of liquids which may be used include alcohol and water alcohol and benzene benzene and petroleum ether acetone and petroleum ether glacial acetic acid and water. [Pg.125]

Dissolve 1 g. of the ketomethylene compound and 1 1 g. or 2 2 g. of pure benzaldehyde (according as to whether the compound may be regarded as RCOCHjR or as RCHjCOCHjR ) in about 10 ml. of rectified (or methylated) spirit, add 0 5 ml. of 5.N -sodium hydroxide solution, shake and allow the mixture to stand for about an hour at room temperature. The benzylidene derivative usually crystallises out or will do so upon scratching the walls of the vessel with a glass rod. Filter off the solid, wash it with a little cold alcohol, and recrystallise it from absolute alcohol (or absolute industrial spirit). [Pg.345]

Place 1 0 g. of the monobasic acid and 2 g. of aniline or p-toluidine in a dry test-tube, attach a short air condenser and heat the mixture in an oil bath at 140-160° for 2 hours do not reflux too vigorously an acid that boils below this temperature range and only allow steam to escape from the top of the condenser. For a sodium salt, use the proportions of 1 g. of salt to 1 5 g. of the base. If the acid is dibasic, employ double the quantity of amine and a reaction temperature of 180-200° incidentally, the procedure is recommended for dibasic acids since the latter frequently give anhydrides with thionyl chloride. Powder the cold reaction mixture, triturate it with 20-30 ml. of 10 per cent, hydrochloric acid, and recrystallise from dilute alcohol. [Pg.362]

Mix 100 g. of maleic acid (Section 111,143) and 100 ml. of tetra chloroethane in a 250 ml. Claisen or distilling flask provided with a thermometer, and attach a Pyrex Liebig condenser. Heat the flask in an air bath (Fig. 11, 5, 3) and collect the distillate in a measuring cylinder. When the temperature reaches 160°, 76 ml. of tetrachloroethane and 15-15-5 ml. of water are present in the receiver. Empty the water in the condenser and continue the distillation change the receiver when the temperature reaches 190°. Collect the maleic anhydride at 195-197°. Recrystallise the crude anhydride from chloroform. The yield of pure maleic anhydride, m.p. 54°, is 70 g. [Pg.376]


See other pages where Recrystallisation temperature is mentioned: [Pg.529]    [Pg.916]    [Pg.165]    [Pg.10]    [Pg.283]    [Pg.85]    [Pg.562]    [Pg.949]    [Pg.13]    [Pg.94]    [Pg.169]    [Pg.258]    [Pg.240]    [Pg.529]    [Pg.916]    [Pg.165]    [Pg.10]    [Pg.283]    [Pg.85]    [Pg.562]    [Pg.949]    [Pg.13]    [Pg.94]    [Pg.169]    [Pg.258]    [Pg.240]    [Pg.351]    [Pg.18]    [Pg.119]    [Pg.180]    [Pg.205]    [Pg.228]    [Pg.244]    [Pg.249]    [Pg.308]    [Pg.313]    [Pg.36]    [Pg.348]    [Pg.403]   
See also in sourсe #XX -- [ Pg.14 , Pg.26 ]




SEARCH



Recrystallisation

Recrystallisation temperatur

© 2024 chempedia.info