Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactors, batch continuous

In this section we discuss in a qualitative way the classical types of reactors batch, continuous stirred-tank reactor (CSTR), and plug flow reactor (PFR). Our purpose is to point out the features of each that impact the ease or difficulty of their temperature control. [Pg.19]

Clearly, the potential hazard from runaway reactions is reduced by reducing the inventory of material in the reactor. Batch operation requires a larger inventory than the corresponding continuous reactor. Thus there may be a safety incentive to change from batch to continuous operation. Alternatively, the batch operation can be... [Pg.262]

The process options reflect the broad range of compositions and gas volumes that must be processed. Both batch processes and continuous processes are used. Batch processes are used when the daily production of sulfur is small and of the order of 10 kg. When the daily sulfur production is higher, of the order of 45 kg, continuous processes are usually more economical. Using batch processes, regeneration of the absorbant or adsorbant is carried out in the primary reactor. Using continuous processes, absorption of the acid gases occurs in one vessel and acid gas recovery and solvent regeneration occur in a separate reactor. [Pg.172]

Batch vs Continuous Reactors. Usually, continuous reactors yield much lower energy use because of increased opportunities for heat interchange. Sometimes the savings are even greater in downstream separation units than in the reaction step itself Especially for batch reactors, any use of refrigeration to remove heat should be critically reviewed. Batch processes often evolve Httle from the laboratory-scale glassware setups where refrigeration is a convenience. [Pg.83]

Specific reactor characteristics depend on the particular use of the reactor as a laboratory, pilot plant, or industrial unit. AH reactors have in common selected characteristics of four basic reactor types the weH-stirred batch reactor, the semibatch reactor, the continuous-flow stirred-tank reactor, and the tubular reactor (Fig. 1). A reactor may be represented by or modeled after one or a combination of these. SuitabHity of a model depends on the extent to which the impacts of the reactions, and thermal and transport processes, are predicted for conditions outside of the database used in developing the model (1-4). [Pg.504]

Hydrogenations can be carried out in batch reactors, in continuous slurry reactors, or in fixed-bed reactors. The material of constmetion is usually 316 L stainless steel because of its better corrosion resistance to fatty acids. The hydrogenation reaction is exothermic and provisions must be made for the effective removal or control of the heat a reduction of one IV per g of C g fatty acid releases 7.1 J (1.7 cal), which raises the temperature 1.58°C. This heat of hydrogenation is used to raise the temperature of the fatty acid to the desired reaction temperature and is maintained with cooling water to control the reaction. [Pg.91]

FIG. 23-23 Batch and continuous polymerizations, (a) Polyethylene in a tiihiilar flow reactor, up to 2 km long hy 6,4 cm ID, (h) Batch process for polystyrene, (c) Batch-continuous process for polystyrene, (d) Suspension (head) process for polyvinylchloride, (e) Emulsion process for polyvinylchloride, (Ray and Laurence, in Lapidus and Amundson, eds, Chemical Reactor Theory Review, Frentice-Hall, 1977. )... [Pg.2101]

Figure 2.5 Possible technological solutions to bioprocess problems a) Fed-batch culture b) Continuous product removal (eg dialysis, vacuum fermentation, solvent extraction, ion exchange etc) c) Two-phase system combined with extractive fermentation (liquid-impelled loop reactor) d) Continuous culture, internal multi-stage reactor e) Continuous culture, dual-stream multi-stage reactor f) Continuous culture with biomass feedback (cell recycling). (See text for further details). Figure 2.5 Possible technological solutions to bioprocess problems a) Fed-batch culture b) Continuous product removal (eg dialysis, vacuum fermentation, solvent extraction, ion exchange etc) c) Two-phase system combined with extractive fermentation (liquid-impelled loop reactor) d) Continuous culture, internal multi-stage reactor e) Continuous culture, dual-stream multi-stage reactor f) Continuous culture with biomass feedback (cell recycling). (See text for further details).
The fat modification processes can be operated either in batches using stirred tank reactors or continuously with packed bed reactors. [Pg.332]

The rate of polymerization with styrene-type monomers is directly proportional to the number of particles formed. In batch reactors most of the particles are nucleated early in the reaction and the number formed depends on the emulsifier available to stabilize these small particles. In a CSTR operating at steady-state the rate of nucleation of new particles depends on the concentration of free emulsifier, i.e. the emulsifier not adsorbed on other surfaces. Since the average particle size in a CSTR is larger than the average size at the end of the batch nucleation period, fewer particles are formed in a CSTR than if the same recipe were used in a batch reactor. Since rate is proportional to the number of particles for styrene-type monomers, the rate per unit volume in a CSTR will be less than the interval-two rate in a batch reactor. In fact, the maximum CSTR rate will be about 60 to 70 percent the batch rate for such monomers. Monomers for which the rate is not as strongly dependent on the number of particles will display less of a difference between batch and continuous reactors. Also, continuous reactors with a particle seed in the feed may be capable of higher rates. [Pg.9]

This chapter treats the effects of temperature on the three types of ideal reactors batch, piston flow, and continuous-flow stirred tank. Three major questions in reactor design are addressed. What is the optimal temperature for a reaction How can this temperature be achieved or at least approximated in practice How can results from the laboratory or pilot plant be scaled up ... [Pg.151]

The four main parameters that are important to transpose a reaction from batch reactor to continuous HEX reactor are thermal behavior, hydrodynamics, reactor dynamics, and residence time. [Pg.262]

The protecting reaction of the enamino pyrrolidinone with t-butoxycarbonyl anhydride was carried out by mixing 4-(N-/-butoxycarbonyl)-4-aminomethylene-pyirolidin-3-one (Boc-AMP) with 1.2 molar equivalents of t-butoxycarbonyl anhydride (/-BoczO) to make l-(N-f-butoxycarbonyl)-4-(N-t-butoxycarbonyl)-ammomethylene-pyrrolidin-3-one (B0C2-AMP). Several types of reactors, including batch reactors, a continuous stirred tank reactor (CSTR),... [Pg.649]

Key PFR = Plug Flow Reactor, BSTR = Batch Stirred-Tank Reactor, (S)BSTR = (Semi)Batch Stirred -Tank Reactor, SBSTR = Semibatch Stirred-Tank Reactor, CSTR = Continuous Stirred-Tank Reactor, TBR = Trickle-Bed Reactor. [Pg.306]

This section is concerned with batch, semi-batch, continuous stirred tanks and continuous stirred-tank-reactor cascades, as represented in Fig. 3.1 Tubular chemical reactor systems are discussed in Chapter 4. [Pg.129]

In this chapter the simulation examples are described. As seen from the Table of Contents, the examples are organised according to twelve application areas Batch Reactors, Continuous Tank Reactors, Tubular Reactors, Semi-Continuous Reactors, Mixing Models, Tank Flow Examples, Process Control, Mass Transfer Processes, Distillation Processes, Heat Transfer, and Dynamic Numerical Examples. There are aspects of some examples which relate them to more than one application area, which is usually apparent from the titles of the examples. Within each section, the examples are listed in order of their degree of difficulty. [Pg.279]

Figure 5.137. Program SEMISEG Varying THETAMIX (0.03, 0.1, 0.3 and 0.6, curves D, C, A, B) gave these results for the semi-batch reactor. Note that when THETA > 1 the reactor becomes continuous. Figure 5.137. Program SEMISEG Varying THETAMIX (0.03, 0.1, 0.3 and 0.6, curves D, C, A, B) gave these results for the semi-batch reactor. Note that when THETA > 1 the reactor becomes continuous.
Stirred tank (agitated) reactors consist of a tank fitted with a mechanical agitator and a cooling jacket or coils. They are operated as batch reactors or continuously. Several reactors may be used in series. [Pg.484]

When choosing between different types of reactors, both continuous and batch reactors were considered from the point of view of the performance of the reactor (continuous plug-flow and ideal batch being equivalent in terms of residence time). If a batch reactor is chosen, it will often lead to a choice of separator for the reactor effluent that also operates in batch mode, although this is not always the case as intermediate storage can be used to overcome the variations with time. Batch separations will be dealt with in Chapter 14. [Pg.143]

Equations (1-1) and (1-2) are true in the general case and can be used to study several modes of reactor operation (e.g. batch, semi-batch, continuous, start-up procedures, etc.). If the assumption is made that the reactor is a vessel continuously operating full, i.e. overflow CSTR, then the right hand side (RHS) of equation (1-2) is zero and (1-1) is considerably simplified to yield ... [Pg.233]

Conventional processes involving distillation of the product directly from the reactor or batch continuous operation where the distillation is carried out in a separate chamber (Chapter 2) provide the backdrop for the many alternative processes that are being discussed. [Pg.7]

Partial anaerobic digestion of aerobic sludge Acid orange 7 Upflow packed bed reactor Batch and continuous... [Pg.106]

Stoichacmetry and reaction equilibria. Homogeneous reactions kinetics. Mole balances batch, continuous-shn-ed tank and plug flow reactors. Collection and analysis of rate data. Catalytic reaction kinetics and isothermal catalytic radar desttpi. Diffusion effects. [Pg.355]

Ujhidy and co-workers studied the thermal ring closure of )V-(3-chloro-phenyl)aminomethylenemalonate (250) to 7-chloro-4-hydroxyquinoline-3-carboxylate (759, R = Cl, R1 = H) in Dowtherm A containing 5% or 10% of paraffin oil at 230°C, 235°C, 240°C, 245°C, 250°C, and 255°C in different reactors (a continuous tank reactor, a batch tank reactor, a cascade of... [Pg.183]

Fig. 2.15. Reactors for producing these materials include batch, continuously vented, tray reactors, twin-screw extruders, and vented single-screw extruders. These production devices will not be covered in this text because they are of more interest to the manufacturing engineer than the extrusion process engineer. Fig. 2.15. Reactors for producing these materials include batch, continuously vented, tray reactors, twin-screw extruders, and vented single-screw extruders. These production devices will not be covered in this text because they are of more interest to the manufacturing engineer than the extrusion process engineer.
Based on experimental results and a model describing the kinetics of the system, it has been found that the temperature has the strongest influence on the performance of the system as it affects both the kinetics of esterification and of pervaporation. The rate of reaction increases with temperature according to Arrhenius law, whereas an increased temperature accelerates the pervaporation process also. Consequently, the water content decreases much faster at a higher temperature. The second important parameter is the initial molar ratio of the reactants involved. It has to be noted, however, that a deviation in the initial molar ratio from the stoichiometric value requires a rather expensive separation step to recover the unreacted component afterwards. The third factor is the ratio of membrane area to reaction volume, at least in the case of a batch reactor. For continuous opera-... [Pg.534]


See other pages where Reactors, batch continuous is mentioned: [Pg.18]    [Pg.2]    [Pg.592]    [Pg.569]    [Pg.36]    [Pg.63]    [Pg.18]    [Pg.2]    [Pg.592]    [Pg.569]    [Pg.36]    [Pg.63]    [Pg.62]    [Pg.89]    [Pg.708]    [Pg.749]    [Pg.135]    [Pg.332]    [Pg.172]    [Pg.328]    [Pg.336]    [Pg.191]    [Pg.29]    [Pg.4]    [Pg.1533]    [Pg.4]    [Pg.28]    [Pg.30]    [Pg.221]   
See also in sourсe #XX -- [ Pg.261 , Pg.275 ]




SEARCH



Batch and Continuous Reactors

Batch and Continuous Stirred Tank Reactors

Batch reactor

Batch versus Continuous Reactors

Continuous reactors batch reactor comparison

Continuous stirred tank reactor (CSTR batch recycle

Continuously stirred tank reactor semi-batch reactors

Reactor, batch continuous flow stirred tank

Reactors batch reactor

Reactors continuously stirred tank batch

Reactors continuously stirred tank semi-batch

Reactors, chemical stirred tanks, batch and continuous

Reactors, continuous backmix batch

© 2024 chempedia.info