Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal batch

Solution We wish to avoid as much as possible the production of di- and triethanolamine, which are formed by series reactions with respect to monoethanolamine. In a continuous well-mixed reactor, part of the monoethanolamine formed in the primary reaction could stay for extended periods, thus increasing its chances of being converted to di- and triethanolamine. The ideal batch or plug-flow arrangement is preferred, to carefully control the residence time in the reactor. [Pg.50]

Heat and mass transfer limitations are rarely important in the laboratory but may emerge upon scaleup. Batch reactors with internal variations in temperature or composition are difficult to analyze and remain a challenge to the chemical reaction engineer. Tests for such problems are considered in Section 1.5. For now, assume an ideal batch reactor with the following characteristics ... [Pg.11]

The most important characteristic of an ideal batch reactor is that the contents are perfectly mixed. Corresponding to this assumption, the component balances are ordinary differential equations. The reactor operates at constant mass between filling and discharge steps that are assumed to be fast compared with reaction half-lives and the batch reaction times. Chapter 1 made the further assumption of constant mass density, so that the working volume of the reactor was constant, but Chapter 2 relaxes this assumption. [Pg.35]

The feed is charged all at once to a batch reactor, and the products are removed together, with the mass in the system being held constant during the reaction step. Such reactors usually operate at nearly constant volume. The reason for this is that most batch reactors are liquid-phase reactors, and liquid densities tend to be insensitive to composition. The ideal batch reactor considered so far is perfectly mixed, isothermal, and operates at constant density. We now relax the assumption of constant density but retain the other simplifying assumptions of perfect mixing and isothermal operation. [Pg.58]

The component balance for a variable-volume but otherwise ideal batch reactor can be written using moles rather than concentrations ... [Pg.58]

Chapter 2 treated multiple and complex reactions in an ideal batch reactor. The reactor was ideal in the sense that mixing was assumed to be instantaneous and complete throughout the vessel. Real batch reactors will approximate ideal behavior when the characteristic time for mixing is short compared with the reaction half-life. Industrial batch reactors have inlet and outlet ports and an agitation system. The same hardware can be converted to continuous operation. To do this, just feed and discharge continuously. If the reactor is well mixed in the batch mode, it is likely to remain so in the continuous mode, as least for the same reaction. The assumption of instantaneous and perfect mixing remains a reasonable approximation, but the batch reactor has become a continuous-flow stirred tank. [Pg.117]

The design equations for a chemical reactor contain several parameters that are functions of temperature. Equation (7.17) applies to a nonisothermal batch reactor and is exemplary of the physical property variations that can be important even for ideal reactors. Note that the word ideal has three uses in this chapter. In connection with reactors, ideal refers to the quality of mixing in the vessel. Ideal batch reactors and CSTRs have perfect internal mixing. Ideal PFRs are perfectly mixed in the radial direction and have no mixing in the axial direction. These ideal reactors may be nonisothermal and may have physical properties that vary with temperature, pressure, and composition. [Pg.227]

Figure 2.4. Schematic drawings of a cylindrical flow reactor and a batch reactor. In the ideal case the flow reactor operates as a plug-flow reactor in which the gas moves as a piston down through the tube, whereas the ideal batch reactor is a well-mixed Tank Reactor... Figure 2.4. Schematic drawings of a cylindrical flow reactor and a batch reactor. In the ideal case the flow reactor operates as a plug-flow reactor in which the gas moves as a piston down through the tube, whereas the ideal batch reactor is a well-mixed Tank Reactor...
Ideal-batch reactor. Consider a batch reactor in which the feed is charged at the beginning of the batch and no product is withdrawn until the batch is complete. Given that ... [Pg.84]

It should be noted that the analysis for an ideal-batch reactor is the same as that for a plug-flow reactor (compare Equations 5.43 and 5.61). All fluid elements have the same residence time in both cases. Thus... [Pg.86]

Figure 5.4a compares the profiles for a mixed-flow and plug-flow reactor between the same inlet and outlet concentrations, from which it can be concluded that the mixed-flow reactor requires a larger volume. The rate of reaction in a mixed-flow reactor is uniformly low as the reactant is instantly diluted by the product that has already been formed. In a plug-flow or ideal-batch reactor,... [Pg.86]

Order of reaction Kinetic expression Ideal-batch model... [Pg.87]

High reaction rate in Equation 5.71 is favored by a high concentration of enzymes (CE ) and high concentration of feed (CA). This means that a plug-flow or ideal-batch reactor is favored if both the feed material and enzymes are to be fed to the reactor. [Pg.94]

When choosing between different types of reactors, both continuous and batch reactors were considered from the point of view of the performance of the reactor (continuous plug-flow and ideal batch being equivalent in terms of residence time). If a batch reactor is chosen, it will often lead to a choice of separator for the reactor effluent that also operates in batch mode, although this is not always the case as intermediate storage can be used to overcome the variations with time. Batch separations will be dealt with in Chapter 14. [Pg.143]

As with continuous processes, the heart of a batch chemical process is its reactor. Idealized reactor models were considered in Chapter 5. In an ideal-batch reactor, all fluid elements have the same residence time. There is thus an analogy between ideal-batch reactors and plug-flow reactors. There are four major factors that effect batch reactor performance ... [Pg.291]

A simulation model needs to be developed for each reactor compartment within each time interval. An ideal-batch reactor has neither inflow nor outflow of reactants or products while the reaction is carried out. Assuming the reaction mixture is perfectly mixed within each reactor compartment, there is no variation in the rate of reaction throughout the reactor volume. The design equation for a batch reactor in differential form is from Chapter 5 ... [Pg.293]

Under ideal batch growth conditions, the quantity of biomass, and therefore the biomass concentration will increase exponentially with respect to time and in accordance with all cells having the same probability to multiply. Thus the overall rate of biomass formation is proportional to the biomass itself where... [Pg.41]

The temperature and composition of the contents of an ideal batch reactor are uniform at any instant, but the concentration changes with time. Since the composition is uniform, the mass balance may be performed over the whole reactor. [Pg.49]


See other pages where Ideal batch is mentioned: [Pg.28]    [Pg.29]    [Pg.29]    [Pg.328]    [Pg.10]    [Pg.11]    [Pg.28]    [Pg.65]    [Pg.66]    [Pg.160]    [Pg.270]    [Pg.83]    [Pg.84]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.91]    [Pg.96]    [Pg.293]    [Pg.440]    [Pg.462]    [Pg.50]    [Pg.67]    [Pg.245]    [Pg.269]    [Pg.91]    [Pg.91]    [Pg.93]   
See also in sourсe #XX -- [ Pg.922 ]




SEARCH



Design equation ideal batch reactor

Ideal batch reactor

Ideal reactors batch reactor

Material balance Ideal batch reactor

Reactor models ideal batch

The Ideal Batch Reactor

The Ideal Well-Stirred Batch Reactor

The ideal semi-batch reactor

© 2024 chempedia.info