Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor and heat transfer

The use of integrated reactor and heat-transfer models is essential for scale-up. Figure 11.7 shows an early reactor design for the same chemistry that was developed without the use of integrated models. Other unoptimized designs with temperature spikes have also been reported [12,44]. Integrated models were used to... [Pg.248]

Determine the temperature on the coolant side, Tq, and the variation with time of the reactor temperature after cooling failure. The thermal capacity of the reactor and heat transfer to the surroundings are to be neglected. Both assumptions are on the safe side (conservative). [Pg.76]

Reactor Parameters These include the reactor volume, space time (reactor volume/inlet volumetric flowrate), and reactor configuration. For given kinetics, thermodynamics, reactor and heat transfer configuration, and space time, the reactor volume needed to achieve a given conversion of reactants is determined. This is the design problem. For a fixed reactor volume, the conversion is affected by the tenperature, pressure, space time, catalyst, and reactor and heat transfer configuratiom This is the performance problem. [Pg.657]

Throughout this book various transport properties and transfer coefficients have been used. These include effective diffusivity and thermial conductivity for mass and heat transport in catalyst pellets, film transfer coefficients for mass and heat transfer across the pellet-bulk fluid interface, transport properties for the degree of dispersion of mass and heat in the reactor, and heat transfer coefficients for heat exchange between the cooling medium and the reactor. In this chapter these transport properties and transfer coefficients are treated in detail, including experimental methods for obtaining these properties. [Pg.514]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

Flow in tubular reactors can be laminar, as with viscous fluids in small-diameter tubes, and greatly deviate from ideal plug-flow behavior, or turbulent, as with gases, and consequently closer to the ideal (Fig. 2). Turbulent flow generally is preferred to laminar flow, because mixing and heat transfer... [Pg.505]

The hydrocarbon gas feedstock and Hquid sulfur are separately preheated in an externally fired tubular heater. When the gas reaches 480—650°C, it joins the vaporized sulfur. A special venturi nozzle can be used for mixing the two streams (81). The mixed stream flows through a radiantly-heated pipe cod, where some reaction takes place, before entering an adiabatic catalytic reactor. In the adiabatic reactor, the reaction goes to over 90% completion at a temperature of 580—635°C and a pressure of approximately 250—500 kPa (2.5—5.0 atm). Heater tubes are constmcted from high alloy stainless steel and reportedly must be replaced every 2—3 years (79,82—84). Furnaces are generally fired with natural gas or refinery gas, and heat transfer to the tube coil occurs primarily by radiation with no direct contact of the flames on the tubes. Design of the furnace is critical to achieve uniform heat around the tubes to avoid rapid corrosion at "hot spots."... [Pg.30]

Variables It is possible to identify a large number of variables that influence the design and performance of a chemical reactor with heat transfer, from the vessel size and type catalyst distribution among the beds catalyst type, size, and porosity to the geometry of the heat-transfer surface, such as tube diameter, length, pitch, and so on. Experience has shown, however, that the reactor temperature, and often also the pressure, are the primary variables feed compositions and velocities are of secondary importance and the geometric characteristics of the catalyst and heat-exchange provisions are tertiary factors. Tertiary factors are usually set by standard plant practice. Many of the major optimization studies cited by Westerterp et al. (1984), for instance, are devoted to reactor temperature as a means of optimization. [Pg.705]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

The above equations for heat transfer apply when there is no heat generation or absorption during the reaction, and the temperature difference between the solid and the gas phase can be simply defined tliroughout the reaction by a single value. Normally this is not the case, and due to the heat of the reaction(s) which occur tlrere will be a change in the average temperature with time. Furthermore, in tire case where a chemical reaction, such as the reduction of an oxide, occurs during the ascent of tire gas in the reactor, the heat transfer coefficient of the gas will vary with tire composition of tire gas phase. [Pg.279]

Mass velocities are still much smaller than in production reactors, and Reynolds numbers based on particle diameter are frequently much less than 100. Consequently flow is not similar to that in commercial reactors, and heat and mass transfer are much poorer. [Pg.36]

Chemical reaction engineering is part of chemical engineering in general. It aims at controlling the chemical conversion on a technical scale and will ultimately lead to appropriate and successful reactor design. An important part is played by various factors, such as flow phenomena, mass and heat transfer, and reaction kinetics. It will be clear that in the first place it is necessary to know these factors separately. [Pg.278]

Information on the composition and temperature changes is obtained from the rate equation, while the mixing patterns are related to the intensity of mixing and reactor geometry. Heat transfer is referred to as the exothermic or endothermic nature of the reactions and the mass transfer to the heterogeneous systems. [Pg.263]

Chemical reactions obey the rules of chemical kinetics (see Chapter 2) and chemical thermodynamics, if they occur slowly and do not exhibit a significant heat of reaction in the homogeneous system (microkinetics). Thermodynamics, as reviewed in Chapter 3, has an essential role in the scale-up of reactors. It shows the form that rate equations must take in the limiting case where a reaction has attained equilibrium. Consistency is required thermodynamically before a rate equation achieves success over tlie entire range of conversion. Generally, chemical reactions do not depend on the theory of similarity rules. However, most industrial reactions occur under heterogeneous systems (e.g., liquid/solid, gas/solid, liquid/gas, and liquid/liquid), thereby generating enormous heat of reaction. Therefore, mass and heat transfer processes (macrokinetics) that are scale-dependent often accompany the chemical reaction. The path of such chemical reactions will be... [Pg.1034]

The essential feature of a Jluidized-bed reactor is that the solids are held in suspension by the upward flow of the reacting fluid this promotes high mass and heat transfer rates and good mixing. Heat transfer coefficients in the order of 200 W/m-°C between jackets and internal coils are typically obtained. The solids may be a catalyst, a reactant (in some fluidized combustion processes), or an inert powder added to promote heat transfer. [Pg.136]

In designing an agitated low conversion reactor, the heat transfer and polyrate must be balanced at the worst condition, normally the highest conversion expected, since heat transfer decreases with increasing viscosity. A suitable safety factor should be allowed for batches with abnormally high polyrates and delays in batch transfer. [Pg.79]

In a typical example (33) a fresh feed of 8% polybutadiene rubber in styrene is added with antioxidant, mineral oil, and recycled monomer to the first reactor at 145 lbs./hr. The reactor is a 100-gallon kettle at approximately 50% tillage with the anchor rotating at 65 rpm. The contents are held at 124°C and about 18% conversion. Cooling is effected via the sensible heat of the feed stream and heat transfer to the reactor jacket. In this reactor the rubber phase particles are formed, their average size determined and much of their morphology established. Particle size is controlled to a large measure by the anchor rpm. [Pg.105]

The study of the peak temperature sensitivity to the reactor operating parameters and the construction of sensitivity boundary curves for stable reactor operation were previously reported ( l). This paper presents a computer study on conceptual relationships between the conversion-product properties and the reactor operating parameters in a plug flow tubular reactor of free radical polymerization. In particular, a contour map of conversion-molecular weight relationships in a reactor of fixed size is presented and the sensitivity of its relationship to the choice of initiator system, solvent system and heat transfer system are discussed. [Pg.221]

The computer simulation study of the operation of the tubular free radical polymerization reactor has shown that the conversion and the product properties are sensitive to the operating parameters such as initiator type, jacket temperature, and heat transfer for a reactor of fixed size. The molecular weight-conversion contour map is particularly significant and it is used in this paper as a basis for a comparison of the reactor performances. [Pg.245]

Section 5.3 discusses a variety of techniques for avoiding scaleup problems. The above paragraphs describe the simplest of these techniques. Mixing, mass transfer, and heat transfer aU become more difficult as size increases. To avoid limitations, avoid these steps. Use premixed feed with enough inerts so that the reaction stays single phase and the reactor can be operated adiabatically. This simplistic approach is occasionally possible and even economical. [Pg.66]


See other pages where Reactor and heat transfer is mentioned: [Pg.42]    [Pg.290]    [Pg.396]    [Pg.42]    [Pg.290]    [Pg.396]    [Pg.34]    [Pg.513]    [Pg.482]    [Pg.418]    [Pg.464]    [Pg.293]    [Pg.459]    [Pg.2546]    [Pg.129]    [Pg.476]    [Pg.219]    [Pg.328]    [Pg.274]    [Pg.1058]    [Pg.142]    [Pg.90]    [Pg.438]    [Pg.4]    [Pg.5]    [Pg.195]    [Pg.103]    [Pg.232]    [Pg.242]    [Pg.110]    [Pg.317]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Coupled Heat and Mass Transfer in Packed Catalytic Tubular Reactors That Account for External Transport Limitations

Heat Transfer to and from Reactors

Heat transfer, reactors

Heat transfer, reactors between particle and fluid

© 2024 chempedia.info