Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity solvation control

The separation of solvent effects on reactivities into constituent initial-state and transition-state effects by the use of appropriate kinetic and thermodynamic data has been successfully carried out for several organic reactions. Thus, for example, the solvolysis of t-butyl chloride and the Menschutkin reaction were treated in this manner some time ago a recent organic example is afforded by the solvolysis of isopropyl bromide in aqueous ethanol. For inorganic reactions, this approach was early used for reactions of tetra-alkyltin(iv) compounds with mercury(ii) halides. A more recent analysis of reactions of low-spin iron(n) complexes with hydroxide and with cyanide in binary aqueous mixtures was complicated by the need to make assumptions about single-ion values in such ion+ion reactions. Recent estimates of thermodynamic parameters for solvation of complexes of the [Fe(phen)3] + type are helpful in this connection. However, it is more satisfactory to work with uncharged reactants when trying to undertake this type of analysis of reactivity trends. A suitable system is provided by the reaction of [PtClaCbipy)] with thiourea. In dioxan-and tetrahydrofuran-water solvent mixtures, reactivity is controlled almost entirely... [Pg.285]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Such easy reactivity and selechvity working under rather mild conditions is probably favored by the lack of relevant solvation effects and by a controlled mobility and diffusion corresponding to few collateral reactions and consequently high selechvity. [Pg.16]

Temperature and pressure effects on rate constants for [Fe(phen)3] +/[Fe(phen)3] + electron transfer in water and in acetonitrile have yielded activation parameters AF was discussed in relation to possible nonadiabaticity and solvation contributions. Solvation effects on AF° for [Fe(diimine)3] " " " " half-cells, related diimine/cyanide ternary systems (diimine = phen, bipy), and also [Fe(CN)6] and Fe aq/Fe aq, have been assessed. Initial state-transition state analyses for base hydrolysis and for peroxodisulfate oxidation for [Fe(diimine)3] +, [Fe(tsb)2] ", [Fe(cage)] " " in DMSO-water mixtures suggest that base hydrolysis is generally controlled by hydroxide (de)hydration, but that in peroxodisulfate oxidation solvation changes for both reactants are significant in determining the overall reactivity pattern. ... [Pg.450]

The nucleophilicity parameters for carbanions of nitronates and malonic acid derivatives have been investigated.143 The nucleophilic reactivities do not correlate with the acidity constants of the conjugate CH acids, and from the poor correlation of the reactivities of the substituted a-nitrobenzyl anions with Hammett s ex-constants it can be inferred that the nucleophilic reactivities are strongly controlled by solvation. [Pg.300]

As most chemical and virtually all biochemical processes occur in liquid state, solvation of the reaction partners is one of the most prominent topics for the determination of chemical reactivity and reaction mechanisms and for the control of reaction conditions and resulting materials. Besides an exhaustive investigation by various experimental methods [1,2,3], theoretical approaches have gained an increasing importance in the treatment of solvation effects [4,5,6,7,8], The reason for this is not only the need for sufficiently accurate models for a physically correct interpretation of the experimental data (Theory determines, what we observe ), but also the limitation of experimental methods in dealing with ultrafast reaction dynamics in the pico- or even subpicosecond regime. These processes have become more and more the domain of computational simulations and a critical evaluation of the accuracy of simulation methods covering experimentally inaccessible systems is of utmost importance, therefore. [Pg.247]

Substrate organization in membrane mimetic systems leads to altered solvation, ionization and reduction potentials and, hence, to altered reaction rates, paths and stereochemistries. These properties have been advantageously exploited, in turn, for reactivity control, catalysis, drug delivery and artificial photosynthesis (8). There are only limited examples of the utilization of membrane mimetic systems in permeability control. In order to gain insight into this important area, we have initiated a research program in BLMs. A status report of our activities in this area will be summarized in the next section. [Pg.96]

The non-diffusional methods of bringing D and A together may also result in payment of an ultimate price of diminished overall efficiency since BET within contact ion pairs is usually more rapid than in solvent separated ion pairs (see below). Indeed, the most important aspect of the forward electron transfer is that it presets the conditions for the competition between BET and the fragmentation reaction. The reactive intermediates (ion pairs) are generated in specific solvation and spin states. That state can be controlled or at least influenced by a selection of the excited state component, the ground state component and solvent [20], as well as by magnetic and electric fields [36]. [Pg.11]

The reactivity of hydroxide ion (and that of other oxyanions) is interpreted in terms of two unifying principles (a) the redox potential of the YO /YO- (Y = H, R, HO, RO, and O) couple (in a specific reaction) is controlled by the solvation energy of the YO anion and the bond energy of the R-OY product (RX - - YO R-OY - - X ), and (b) the nucleophilic displacement and addition reactions of YO occur via an inner-sphere single-electron shift. The electron is the ultimate base and one-electron reductant which, upon introduction into a solvent, is transiently solvated before it is leveled (reacts) to give the conjugate base (anion reductant) of the solvent. Thus, in water the hydrated electron... [Pg.3487]

It is reasonable to expect the reactivity of unsolvated ions to exceed that of their solvated counterparts. However, the solvation process probably proceeds with little or no activation energy so that only reactions capable of competing with it can lead to abnormal products. Reactions with nucleophiles or bases in the bulk solvent, except when these are at very high concentrations, are unlikely to do so. On the other hand, because the rate of solvation will be controlled by relaxation processes in the solvent cage, intramolecular reactions, such as rearrangement or reaction with the coimter-anion, if of sufficiently low activation energy, might be expected to compete by virtue of the favourable stereochemical disposition of the reactants. [Pg.377]


See other pages where Reactivity solvation control is mentioned: [Pg.131]    [Pg.25]    [Pg.404]    [Pg.59]    [Pg.134]    [Pg.667]    [Pg.87]    [Pg.24]    [Pg.509]    [Pg.661]    [Pg.149]    [Pg.112]    [Pg.251]    [Pg.149]    [Pg.159]    [Pg.76]    [Pg.648]    [Pg.68]    [Pg.174]    [Pg.524]    [Pg.313]    [Pg.248]    [Pg.152]    [Pg.572]    [Pg.115]    [Pg.6]    [Pg.105]    [Pg.291]    [Pg.299]    [Pg.310]    [Pg.246]    [Pg.415]    [Pg.842]    [Pg.409]    [Pg.210]    [Pg.551]    [Pg.47]    [Pg.90]    [Pg.56]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Controlled solvation

Controlling solvation

Reactivity controls

© 2024 chempedia.info