Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions oxidation reaction, silver

Reactions alcohols, 29 36-49 adsorption, 29 36-37 clean surfaces, 29 37-38 ethanol oxidation, 29 44—48 methanol oxidation, 29 38-44 oxidation on copper and silver, 29 38-48 oxidation reaction, silver, 29 48-49 base-catalyzed, of hydrocarbons, 12 117 free radical mechanism in, of hydrogen peroxide, 4 343... [Pg.187]

The formation of metallic silver in an aqueous solution of silver nitrate that is exposed to light and that contains a trace of an organic substance to prime the reaction Oxidative reactions often proceed into polymerization... [Pg.438]

Propylene oxide is also produced in Hquid-phase homogeneous oxidation reactions using various molybdenum-containing catalysts (209,210), cuprous oxide (211), rhenium compounds (212), or an organomonovalent gold(I) complex (213). Whereas gas-phase oxidation of propylene on silver catalysts results primarily in propylene oxide, water, and carbon dioxide as products, the Hquid-phase oxidation of propylene results in an array of oxidation products, such as propylene oxide, acrolein, propylene glycol, acetone, acetaldehyde, and others. [Pg.141]

Sohd silver is more permeable by oxygen than any other metal. Oxygen moves freely within the metallic silver lattice, not leaving the surface until two oxygen atoms connect to form Og. This occurs at - 300° C. Below this temperature silver is an efficient catalyst for gaseous oxidative chemical reactions. Silver is also an extremely efficient catalyst for aqueous oxidative sanitation. [Pg.82]

Silver(Il) oxide is a strong oxidant. Reactions ia alkaline medium have been studied extensively (19). It decomposes ia aqueous solution unless stabilized with concentrated nitric acid. [Pg.91]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

Silver sulfate has been described as a catalyst for the reduction of aromatic hydrocarbons to cyclohexane derivatives (69). It is also a catalyst for oxidation reactions, and as such has long been recommended for the oxidation of organic materials during the deterrnination of the COD of wastewater samples (70,71) (see WASTES, INDUSTRIAL WATER, INDUSTRIAL WATERTTEATI NT). [Pg.92]

A silver-gauze catalyst is still used in some older processes that operate at a relatively higher temperature (about 500°C). New processes use an iron-molyhdenum oxide catalyst. Chromium or cohalt oxides are sometimes used to dope the catalyst. The oxidation reaction is exothermic and occurs at approximately 400-425 °C and atmospheric pressure. Excess air is used to keep the methanol air ratio helow the explosion limits. Figure 5-6 shows the Haldor Topsoe iron-molyhdenum oxide catalyzed process. [Pg.153]

It was found that the value of F, is markedly increased by ions which are effective catalysts of oxidation reactions of peroxydisulphate. These are silver(I) copper(n), and iron(III). Cobalt(II) and nickel(II) ions, although they are good catalysts for the decomposition of hydrogen peroxide, exert their effect merely as inert electrolytes in the induced reaction. Therefore it can be concluded that, in this process, activation of the rather less reactive 8203 is more important than that of hydrogen peroxide . ... [Pg.562]

Since the reaction between hydrogen and oxygen is very slow at room temperature, catalysts are incorporated in the carbon electrodes. At the anode, suitable catalysts are finely divided into platinum or palladium at the cathode, cobaltous oxide, or silver. The two halfreactions shown above yield the overall result as ... [Pg.669]

It should be noted that all terms concerning the electrons in the metals as well as those connected with the metals not directly participating in the cell reaction (Pt) have disappeared from the final Eq. (3.1.49). This result is of general significance, i.e. the EMFs of cell reactions involving oxidation-reduction processes do not depend on the nature of the metals where those reactions take place. The situation is, of course, different in the case of a metal directly participating in the cell reaction (for example, silver in the above case). [Pg.176]

Interaction of the 3 2 complex with iron(III) chloride and calcium oxide, mercury oxide or silver oxide was usually too violent for preparative purposes, but zinc oxide was satisfactory. Reaction with water was violent. [Pg.529]

Interaction of chlorine with methane is explosive at ambient temperature over yellow mercury oxide [1], and mixtures containing above 20 vol% of chlorine are explosive [2], Mixtures of acetylene and chlorine may explode on initiation by sunlight, other UV source, or high temperatures, sometimes very violently [3], Mixtures with ethylene explode on initiation by sunlight, etc., or over mercury, mercury oxide or silver oxide at ambient temperature, or over lead oxide at 100°C [1,4], Interaction with ethane over activated carbon at 350°C has caused explosions, but added carbon dioxide reduces the risk [5], Accidental introduction of gasoline into a cylinder of liquid chlorine caused a slow exothermic reaction which accelerated to detonation. This effect was verified [6], Injection of liquid chlorine into a naphtha-sodium hydroxide mixture (to generate hypochlorite in situ) caused a violent explosion. Several other incidents involving violent reactions of saturated hydrocarbons with chlorine were noted [7],... [Pg.1406]

Especially for the low temperature water gas shift reaction the mechanistic scheme, proposed here, seems to correspond to the three different adsorbed oxygen species, proposed by Kobaya-shi (13) for the ethylene oxidation on silver, whereas the importance of some surface complexes of CO - 1 0 type has been revealed (14) by analysing steady state data. [Pg.298]

Silver is especially attractive among all metals. As we all know, the composite silver nanomaterials are used in many application fields, such as photoelectricity science, film separation, catalysis, and so on. Composite silver catalyst is usually applied in selective oxidation reaction. ... [Pg.81]

Adsorption of Ag on the surface of PdO is also an interesting option offered by colloidal oxide synthesis. Silver is a well-known promoter for the improvement of catalytic properties, primarily selectivity, in various reactions such as hydrogenation of polyunsaturated compounds." The more stable oxidation state of silver is -F1 Aquo soluble precursors are silver nitrate (halide precursors are aU insoluble), and some organics such as acetate or oxalate with limited solubility may also be used." Ag" " is a d ° ion and can easily form linear AgL2 type complexes according to crystal field theory. Nevertheless, even for a concentrated solution of AgNOs, Ag+ does not form aquo complexes." Although a solvation sphere surrounds the cation, no metal-water chemical bonds have been observed. [Pg.278]


See other pages where Reactions oxidation reaction, silver is mentioned: [Pg.380]    [Pg.329]    [Pg.531]    [Pg.531]    [Pg.196]    [Pg.471]    [Pg.37]    [Pg.420]    [Pg.228]    [Pg.531]    [Pg.23]    [Pg.917]    [Pg.919]    [Pg.67]    [Pg.817]    [Pg.1368]    [Pg.69]    [Pg.212]    [Pg.160]    [Pg.437]    [Pg.406]    [Pg.919]    [Pg.163]    [Pg.123]    [Pg.219]    [Pg.83]    [Pg.42]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



1,3-Diferrocenylimidazolium tetraphenylborate, reaction with silver oxide

Aldehydes, reaction with silver oxide

Amidation reactions, silver-mediated oxidation

Diazoketones reaction with silver oxide

Hunsdiecker reactions silver© oxide

Oxidation silver

Silver oxidant

Silver oxide

Silver oxide elimination reaction

Silver oxide oxidation

Silver oxide reaction

Silver oxide reaction

Silver oxide reaction with acyl chloride

Silver oxide, Hofmann elimination reaction

Silver oxide, Hofmann elimination reaction and

Silver oxide, reaction with boron

Silver oxide, reaction with boron alkyls

Silver-copper reaction, oxidation-reduction

Silver-mediated oxidation reactions

Silver-mediated oxidation reactions oxidative decarboxylation

Silver-mediated oxidation reactions promoters

© 2024 chempedia.info