Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions of Carbon Monoxide

The acetic anhydride process employs a homogeneous rhodium catalyst system for reaction of carbon monoxide with methyl acetate (36). The plant has capacity to coproduce approximately 545,000 t/yr of acetic anhydride, and 150,000 t/yr of acetic acid. One of the many challenges faced in operation of this plant is recovery of the expensive rhodium metal catalyst. Without a high recovery of the catalyst metal, the process would be uneconomical to operate. [Pg.167]

In the early 1920s Badische Arulin- und Soda-Fabrik aimounced the specific catalytic conversion of carbon monoxide and hydrogen at 20—30 MPa (200—300 atm) and 300—400°C to methanol (12,13), a process subsequendy widely industrialized. At the same time Fischer and Tropsch aimounced the Synth in e process (14,15), in which an iron catalyst effects the reaction of carbon monoxide and hydrogen to produce a mixture of alcohols, aldehydes (qv), ketones (qv), and fatty acids at atmospheric pressure. [Pg.79]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The 0X0 process, also known as hydrofomiylation, is the reaction of carbon monoxide (qv) and hydrogen (qv) with an olefinic substrate to form isomeric aldehydes (qv) as shown in equation 1. The ratio of isomeric aldehydes depends on the olefin, the catalyst, and the reaction conditions. [Pg.465]

Fluoroformyl peroxide [692-74-0] (20, R = R = F), has been prepared by the reaction of carbon monoxide, fluorine, and oxygen or by the photolytic reaction of oxalyl fluoride with oxygen (187). [Pg.125]

Ahphatic polyesters are also available by the chemical reaction of carbon monoxide and formaldehyde (140), carbon dioxide and epoxy compounds... [Pg.480]

The only industrially important processes for the manufacturing of synthetic benzaldehyde involve the hydrolysis of benzal chloride [98-87-3] and the air oxidation of toluene. The hydrolysis of benzal chloride, which is produced by the side-chain chlorination of toluene, is the older of the two processes. It is no longer utilized ia the United States. Other processes, including the oxidation of benzyl alcohol, the reduction of benzoyl chloride, and the reaction of carbon monoxide and benzene, have been utilized ia the past, but they no longer have any iadustrial appHcation. [Pg.34]

An interesting development in the use of metal carbonyl catalysts is the production of hydrocarbons from carbon monoxide and hydrogen. The reaction of carbon monoxide and hydrogen in a molten solution of sodium chloride and aluminum chloride with It4(CO) 2 a catalyst yields a mixture of hydrocarbons. Ethane is the primary product (184). [Pg.71]

Methanol Synthesis. Methanol has been manufactured on an industrial scale by the cataly2ed reaction of carbon monoxide and hydrogen since 1924. The high pressure processes, which utili2e 2inc oxide—chromium oxide catalysts, are operated above 20 MPa (200 atm) and temperatures of 300—400°C. The catalyst contains approximately 72 wt % 2inc oxide, 22 wt % chromium (II) oxide, 1 wt % carbon, and 0.1 wt % chromium (VI) the balance is materials lost on heating. [Pg.199]

G-19 Dicarboxylic Acids. The C-19 dicarboxyhc acids are generally mixtures of isomers formed by the reaction of carbon monoxide on oleic acid. Since the reaction produces a mixture of isomers, no single chemical name can be used to describe them. Names that have been used include 2-nonyldecanedioic acid, 2-octylundecanedioic acid, l,8-(9)-heptadecanedicarboxyhc acid, and 9-(10)-carboxystearic acid. The name 9-(10)-carboxystearic acid can be used correctiy if the product is made with no double bond isomerization (rhodium triphenylphosphine catalyst system). [Pg.63]

Four-membered heterocycles can be formed by the addition of isocyanides to 1,3-dipoles (80AG(E)45) and by the reaction of carbon monoxide with -haloamines, with the aid of palladium catalysis (Scheme 10) (79CC699). [Pg.36]

Transition-metal organometallic catalysts in solution are more effective for hydrogenation than are metals such as platinum. They are used for reactions of carbon monoxide with olefins (hydroformyla-tion) and for some ohgomerizations. They are sometimes immobihzed on polymer supports with phosphine groups. [Pg.2094]

A new route to ethylene glycol from ethylene oxide via the intermediate formation of ethylene carbonate has recently been developed by Texaco. Ethylene carbonate may be formed by the reaction of carbon monoxide, ethylene oxide, and oxygen. Alternatively, it could be obtained by the reaction of phosgene and methanol. [Pg.193]

Self-Test 14.10B What type of reaction is the reaction of carbon monoxide with hydroxide ion ... [Pg.732]

Drauz,. K. Burkhardt, O. Beller, M. Eckert, M. (Degussa-Huels A.-G., Germany). Amidocarbonylation procedure and catalysts for the production of N-acylaminoacids from the reaction of carbon monoxide with aldehydes and amides or nitriles. Ger. Offen. 2000 DE 10012251. Chem. Abstr. 2000, 134, 56964. [Pg.205]

The reactions of carbon monoxide with Ni and Fe proceed rapidly at low temperature and pressure. [Pg.747]

The water gas shift reaction is used extensively in industry to increase the hydrogen content of water gas (synthesis gas) through the reaction of carbon monoxide (CO) with water according to the following equation ... [Pg.126]

Phosgene is a colorless gas at ambient temperature and pressure. Its odor has been described as similar to new-mown hay. Phosgene is manufactured from a reaction of carbon monoxide and chlorine gas in the presence of activated charcoal. The production of dyestuffs, isocyanates, carbonic acid esters (polycarbonates), acid chlorides, insecticides, and pharmaceutical chemicals requires phosgene. Manufacture of phosgene is approximately 1 million tons per year (y) in the United States, and more than 10,000 workers are involved in its manufacture and use. Manufacture of phosgene in the United States is... [Pg.32]

High-pressure in-situ NMR spectroscopy have been reported about reactions of carbon monoxide with cobalt complexes of the type, [Co(CO)3L]2. For L=P(n-C4H9)3, high pressures of carbon monoxide cause CO addition and disproportionation of the catalyst to produce a catalytically inactive cobalt(I) salt with the composition [Co(CO)3L2]+[Co(CO)4] . Salt formation is favoured by polar solvents [13],... [Pg.136]

Carbon dioxide can be formed by the reaction of oxygen with carbon to form carbon monoxide, followed by the reaction of carbon monoxide with oxygen. Carbon dioxide can also be formed directly from carbon and oxygen. No matter which pathway is used, the enthalpy change of the reaction is the same. [Pg.243]

Consider the reaction of carbon monoxide and chlorine to form phosgene, COCl2(g). [Pg.349]

This enzyme [EC 1.2.99.2], also known as acetyl-CoA synthase, catalyzes the reaction of carbon monoxide with water and an acceptor to produce carbon dioxide and the reduced acceptor. The cofactors of this enzyme include nickel and zinc ions as well as non-heme iron. Methyl viologen can act as the acceptor substrate. The enzyme is isolated from Clostridium sp. Interestingly, it also catalyzes an exchange reaction of carbon between Cl of acetyl-CoA and carbon monoxide. The protein participates in the synthesis of acetyl-CoA from carbon dioxide and hydrogen in the organisms. [Pg.112]


See other pages where Reactions of Carbon Monoxide is mentioned: [Pg.258]    [Pg.259]    [Pg.538]    [Pg.539]    [Pg.440]    [Pg.311]    [Pg.313]    [Pg.220]    [Pg.50]    [Pg.52]    [Pg.70]    [Pg.488]    [Pg.148]    [Pg.129]    [Pg.150]    [Pg.908]    [Pg.590]    [Pg.42]    [Pg.99]    [Pg.336]    [Pg.136]    [Pg.76]    [Pg.34]    [Pg.363]    [Pg.130]   


SEARCH



Carbon monoxide reactions

From the reactions of carbon monoxide

Further oxidation reactions of carbon monoxide in homogeneous systems

Insertion Reactions of Carbon Monoxide and Isonitriles

Monoxide Reactions

Other Reactions of Carbon Monoxide

Oxidation reactions of carbon monoxide

REACTIONS OF HALOGEN COMPOUNDS WITH NITRIC OXIDE AND CARBON MONOXIDE

Reaction between Carbon Monoxide and the Surface of Nickel

Reaction of carbon monoxide with microperoxidase

Reaction of carbon monoxide with sulphur dioxide

Reactions of Carbon Monoxide with Transition Metals

The Synthesis of Hydrocarbons from Carbon Monoxide,- and Related Reactions

© 2024 chempedia.info