Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions Involving Alkenes and Alkynes

The corresponding assembly of the fused 7/7-bicyclic substructure present in 93 by domino dienyne metathesis of silyl ether 92 with Grubbs catalyst 2 was [Pg.44]

Compound 119 was then used straightforwardly for the total synthesis of the antitumor agents (—)-acylfulvene and (—)-irofulvene belonging to the illudin family of sesquiterpenes. [Pg.49]

Strained small ring olefins are also highly suitable for ROM/enyne RCM reactions. An extended domino ROM/enyne RCM/diene RCM process leading to a [Pg.50]


Predict the products of reactions involving alkenes and alkynes. [Pg.182]

Carbon-carbon double bonds are reaction sites and so represent functional groups. Most addition reactions involving alkenes and alkynes proceed rapidly at room temperature. By contrast, many substitution reactions of the alkanes require catalysts and high temperatures. [Pg.1089]

Two radical polar crossover domino reactions involving alkenes and alkynes were reported by Chemla and coworkers [61] in 2006 and 2008, respectively (Scheme 5.36). The radical 167 was generated from a zinc reagent anion and... [Pg.165]

One of the most general and useful reactions of alkenes and alkynes for synthetic purposes is the addition of electrophilic reagents. This chapter is restricted to reactions which proceed through polar intermediates or transition states. Several other classes of addition reactions are also of importance, and these are discussed elsewhere. Nucleophilic additions to electrophilic alkenes were covered in Chapter 1, and cycloadditions involving concerted mechanisms will be encountered in Chapter 6. Free-radical addition reactions are considered in Chapter 10. [Pg.191]

Hydrostannation reactions of alkenes and alkynes which involve stannyl radicals have received much wider attention. They are often tolerant of a functional group, and can be used for preparing functionally-substituted organotin compounds.84... [Pg.56]

San Filippo et al. have extended this reaction to alkenes and alkynes to give dichloroalkanes and dichloroaUcenes in fair to good yield. Irradiation is not necessary. In both cases the reaction involves cis-addition to the unsaturated linkage as shown in the examples ... [Pg.413]

Halometallation reaction of alkenes and alkynes is believed to be involved in... [Pg.435]

Various addition reactions of alkenes and alkynes have been termed insertion processes. As the term insertion per se is a nonchemical term, it might be conveniently substituted with hydrometallation (H—M), carbometallation (C—M), heteroatom-metallation or heterometallation (X—M), and metallometallation (M—M), depending on the (7-bond that is added to tt compounds. These addition reactions involving Pd are represented by the general equations using alkenes as representative tt compounds as shown in Scheme 7. The alkenes in Scheme 7 may be replaced with alkynes and other 7T compounds. [Pg.135]

The study aids for this chapter include key terms and concepts (which are hyperlinked to the Glossary from the hold, hlue terms in the WileyPLUS version of the hook at wileyplus.com), a Mechanism Review of Alkene Addition Reactions, and a Synthetic Connections roadmap involving alkenes and alkynes. [Pg.383]

Several examples of Pd°-catalyzed carboamination reactions between allenes and aryl or alkenyl halides have been reported [50[. For example, treatment of allene 52 with iodobenzene in the presence of K2CO3 and 2mol% Pd(PPh3)4 afforded pyrrolidine 53 in 78% yield (Eq. (1.25)) [50a]. Mechanisms involving aikene amino-palladation (similar to the reactions of alkynes and alkenes noted above) have occasionally been invoked to explain these reactions. However, in many instances these transformations may involve intermediate Ji-allylpalladium complexes. Due to this mechanistic ambiguity, these transformations have been included in this section for comparison with the related reactions of alkenes and alkynes. Similar reactions involving allylic halides have also been described (Eq. (1-26)) [51]. [Pg.11]

Reactions of alkynes with electrophiles are generally similar to those of alkenes. Because the HOMO of alkynes (acetylenes) is also of n type, it is not surprising that there IS a good deal of similarity between alkenes and alkynes in their reactivity toward electrophilic reagents. The fundamental questions about additions to alkynes include the following. How reactive are alkynes in comparison with alkenes What is the stereochemistry of additions to alkynes And what is the regiochemistry of additions to alkynes The important role of halonium ions and mercurinium ions in addition reactions of alkenes raises the question of whether similar species can be involved with alkynes, where the ring would have to include a double bond ... [Pg.371]

The syntheses and spectroscopic and electrochemical characterization of the rhodium and iridium porphyrin complexes (Por)IVI(R) and (Por)M(R)(L) have been summarized in three review articles.The classical syntheses involve Rh(Por)X with RLi or RMgBr, and [Rh(Por) with RX. In addition, reactions of the rhodium and iridium dimers have led to a wide variety of rhodium a-bonded complexes. For example, Rh(OEP)]2 reacts with benzyl bromide to give benzyl rhodium complexes, and with monosubstituted alkenes and alkynes to give a-alkyl and fT-vinyl products, respectively. More recent synthetic methods are summarized below. Although the development of iridium porphyrin chemistry has lagged behind that of rhodium, there have been few surprises and reactions of [IrfPorih and lr(Por)H parallel those of the rhodium congeners quite closely.Selected structural data for rr-bonded rhodium and iridium porphyrin complexes are collected in Table VI, and several examples are shown in Fig. 7. ... [Pg.295]

The gas-phase reaction of cationic zirconocene species, ZrMeCp2, with alkenes and alkynes was reported to involve two major reaction sequences, which are the migratory insertion of these unsaturated hydrocarbons into the Zr-Me bond (Eq. 3) and the activation of the C-H bond via er-bonds metathesis rather than /J-hydrogen shift/alkene elimination (Eq. 4) [130,131]. The insertion in the gas-phase closely parallels the solution chemistry of Zr(R)Cp2 and other isoelec-tronic complexes. Thus, the results derived from calculations based on this gas-phase reactivity should be correlated directly to the solution reactivity (vide infra). [Pg.18]

Aside from the Ziegler-Natta polymerization, alkene and alkyne metathesis, and other reactions of Ti-methylene complexes, carbometallation reactions induced by alkyltitanium compounds have been dominated by those involving... [Pg.259]

The currently known carbometallation chemistry of the group 6 metals is dominated by the reactions of metal-carbene and metal-carbyne complexes with alkenes and alkynes leading to the formation of four-membered metallacycles, shown in Scheme 1. Many different fates of such species have been reported, and the readers are referred to reviews discussing these reactions.253 An especially noteworthy reaction of this class is the Dotz reaction,254 which is stoichiometric in Cr in essentially all cases. Beyond the formation of the four-membered metallacycles via carbometallation, metathesis and other processes that may not involve carbometallation appear to dominate. It is, however, of interest to note that metallacyclobutadienes containing group 6 metals can undergo the second carbometallation with alkynes to produce metallabenzenes, as shown in Scheme 53.255 As the observed conversion of metallacyclobutadienes to metallabenzenes can also proceed via a Diels-Alder-like... [Pg.284]

Muetterties has suggested that the dimeric hydride [RhH(P OiPr 3)2]2 catalyzes alkene and alkyne hydrogenation via dinuclear intermediates [91]. However, no kinetic evidence has been reported to prove the integrity of the catalysts during the reactions. On the other hand, studies of the kinetics of the hydrogenation of cyclohexene catalyzed by the heterodinuclear complexes [H(CO) (PPh3)2Ru((u-bim)M(diene)] (M = Rh, Ir bim=2,2 -biimidazolate) suggested that the full catalytic cycle involves dinuclear intermediates [92]. [Pg.30]

The hydrostannation of alkenes and alkynes can be catalyzed by a number of transition metals (Ni, Pd, Pt, Mo, etc.), but most studies have involved palladium.106 The mechanism that is most commonly accepted is shown for an alkyne in Scheme 1 the model for an alkene is similar. This mechanism accounts for the observations that the reactions normally involve cir-addition, that the R3Sn group enters so as to avoid steric hindrance by the largest substituent group on the alkene or alkyne, and that the regioselectivity depends on the polarization of the palladium-hydrogen bond in the sense Pd -H15-. [Pg.816]

Af-Acyliminium ions are known to serve as electron-deficient 4n components and undergo [4+2] cycloaddition with alkenes and alkynes.15 The reaction has been utilized as a useftil method for the construction of heterocycles and acyclic amino alcohols. The reaction can be explained in terms of an inverse electron demand Diels-Alder type process that involves an electron-deficient hetero-diene with an electron-rich dienophile. Af-Acyliminium ions generated by the cation pool method were also found to undergo [4+2] cycloaddition reaction to give adduct 7 as shown in Scheme 7.16 The reaction with an aliphatic olefin seems to proceed by a concerted mechanism, whereas the reaction with styrene derivatives seems to proceed by a stepwise mechanism. In the latter case, significant amounts of polymeric products were obtained as byproducts. The formation of polymeric byproducts can be suppressed by micromixing. [Pg.205]

Other examples of the iodonium ylide-based syntheses of furan derivatives involve cycloaddition reactions with alkenes or alkynes. Although the majority of these syntheses involve stable iodonium ylides (86JOC3453 94T11541) (e.g., Eqs. 16 and 17), in some cases the ylides are unstable and are generated in situ (92JOC2135) (e.g., Eq. 18). In the case of alkenes, dihydrofuran derivatives are obtained (Eqs. 16-18). This synthetic route is especially useful for the synthesis of dihydrobenzofuran derivatives that are related to the neolignan family of natural products (Eq. 18). [Pg.17]

By far the most commonly used - though not the most environmentally friendly -solvent is CCl (or more usually water-CCl ). In a classic paper Sharpless et al. showed that oxidation reactions of RuO (and other some Ru-based oxidants) were accelerated by addition of a little acetonitrile to the conventional water-CCl biphasic mixture. It was suggested that the CH3CN might function as a mild donor stabilising a lower oxidation state carboxylato Ru species which could be involved in the catalytic process [260]. A comparative study of CCl, acetone, ethyl acetate, cyclohexane and acetone for cleavage of alkenes and alkynes by RuClg/aq. IO(OH)3/solvent showed that cyclohexane was the most effective [216]. Other solvents sometimes... [Pg.13]

The versatility of these [4+2] heterocyclization reactions is a consequence of the wide range of ene and diene components which can be used. In addition to alkenes and alkynes functioning as ene components, a variety of heterodienophiles is available such as electron-deficient imines (e.g. equation 89), nitriles e.g. equation 90), electrophilic carbonyl compounds (e.g. equation 91), thiocarbonyl compounds (e.g. equation 92), singlet oxygen (e.g. equation 93), nitroso compounds (e.g. equation 94), sulfenylsulfonamides (e.g. equation 95) and azo compounds (e.g. equation 96). Many of these reactions proceed with excellent regioselectivity and stereoselectivity, probably because in many instances they involve... [Pg.80]


See other pages where Reactions Involving Alkenes and Alkynes is mentioned: [Pg.37]    [Pg.150]    [Pg.41]    [Pg.37]    [Pg.150]    [Pg.41]    [Pg.41]    [Pg.232]    [Pg.273]    [Pg.29]    [Pg.4]    [Pg.470]    [Pg.23]    [Pg.16]    [Pg.376]    [Pg.217]    [Pg.532]    [Pg.91]    [Pg.280]    [Pg.11]    [Pg.142]    [Pg.468]    [Pg.793]    [Pg.227]    [Pg.275]    [Pg.539]    [Pg.614]    [Pg.970]   


SEARCH



Alkenes and alkynes

© 2024 chempedia.info