Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions Control Corrosion

This equation was first postulated empirically by Wagner and Traud (1938). In Eq. (7-26), b+ and b are the slopes of the Tafel lines of the anodic and cathodic partial reactions. The fundamentals of polarization resistance measurements have been described in more detail by Mansfeld (1976). This concept has also been adopted for the interpretation of EIS (Mansfeld, 1981 Mansfeld et al., 1982). For the simplest case of a purely reaction controlled corrosion process, the Faraday impedance Zp in Fig. 7-3 may be replaced by a potential dependent charge transfer resistance / (( ), which is composed of the charge transfer resistances of the anodic and cathodic partial reactions. At the corrosion potential, the polarization resistance corresponds to Rp = R (Eco ) Th overall impedance of the equivalent circuit in Fig. 7-3 can then be described by... [Pg.300]

The production of hydroxide ions creates a localized high pH at the cathode, approximately 1—2 pH units above bulk water pH. Dissolved oxygen reaches the surface by diffusion, as indicated by the wavy lines in Figure 8. The oxygen reduction reaction controls the rate of corrosion in cooling systems the rate of oxygen diffusion is usually the limiting factor. [Pg.266]

The corrosion rate is controlled mainly hy cathodic reaction rates. Cathodic Reactions 5.2 and 5.3 are usually much slower than anodic Reaction 5.1. The slower reaction controls the corrosion rate. If water pH is depressed. Reaction 5.3 is favored, speeding attack. If oxygen concentration is high. Reaction 5.2 is aided, also increasing wastage hy a process called depolarization. Depolarization is simply hydrogen-ion removal from solution near the cathode. [Pg.98]

The study of corrosion is essentially the study of the nature of the metal reaction products (corrosion products) and of their influence on the reaction rate. It is evident that the behaviour of metals and alloys in most practical environments is highly dependent on the solubility, structure, thickness, adhesion, etc. of the solid metal compounds that form during a corrosion reaction. These may be formed naturally by reaction with their environment (during processing of the metal and/or during subsequent exposure) or as a result of some deliberate pretreatment process that is used to produce thicker films or to modify the nature of existing films. The importance of these solid reaction products is due to the fact that they frequently form a kinetic barrier that isolates the metal from its environment and thus controls the rate of the reaction the protection afforded to the metal will, of course, depend on the physical and chemical properties outlined above. [Pg.22]

For diffusion controlled corrosion reactions e.g. dissolved oxygen reduction, and the effect of temperature which increases diffusion rates, then by substituting viscosity and the diffusion coefficients at appropriate temperatures into the Reynolds No. and Schmidt No., changes in corrosion rate can be calculated. [Pg.319]

This represents a special case of high-level turbulence at a surface by the formation of steam and the possibility of the concentration of ions as water evaporates into the steam bubbles . For those metals and alloys in a particular environment that allow diffusion-controlled corrosion processes, rates will be very high except in the case where dissolved gases such as oxygen are the main cathodic reactant. Under these circumstances gases will be expelled into the steam and are not available for reaction. However, under conditions of sub-cooled forced circulation, when cool solution is continually approaching the hot metal surface, the dissolved oxygen... [Pg.328]

Kassner used a rotating disc, for which the hydrodynamic conditions are well defined, to study the dissolution kinetics of Type 304 stainless steel in liquid Bi-Sn eutectic. He established a temperature and velocity dependence of the dissolution rate that was consistent with liquid diffusion control with a transition to reaction control at 860 C when the speed of the disc was increased. The rotating disc technique has also been used to investigate the corrosion stability of both alloy and stainless steels in molten iron sulphide and a copper/65% calcium melt at 1220 C . The dissolution rate of the steels tested was two orders of magnitude higher in the molten sulphide than in the metal melt. [Pg.1062]

The parameter p (= 7(5 ) in gas-liquid sy.stems plays the same role as V/Aex in catalytic reactions. This parameter amounts to 10-40 for a gas and liquid in film contact, and increases to lO -lO" for gas bubbles dispersed in a liquid. If the Hatta number (see section 5.4.3) is low (below I) this indicates a slow reaction, and high values of p (e.g. bubble columns) should be chosen. For instantaneous reactions Ha > 100, enhancement factor E = 10-50) a low p should be selected with a high degree of gas-phase turbulence. The sulphonation of aromatics with gaseous SO3 is an instantaneous reaction and is controlled by gas-phase mass transfer. In commercial thin-film sulphonators, the liquid reactant flows down as a thin film (low p) in contact with a highly turbulent gas stream (high ka). A thin-film reactor was chosen instead of a liquid droplet system due to the desire to remove heat generated in the liquid phase as a result of the exothermic reaction. Similar considerations are valid for liquid-liquid systems. Sometimes, practical considerations prevail over the decisions dictated from a transport-reaction analysis. Corrosive liquids should always be in the dispersed phase to reduce contact with the reactor walls. Hazardous liquids are usually dispensed to reduce their hold-up, i.e. their inventory inside the reactor. [Pg.388]

A thio-substituted, quaternary ammonium salt can be synthesized by the Michael addition of an alkyl thiol to acrylamide in the presence of benzyl trimethyl ammonium hydroxide as a catalyst [793-795]. The reaction leads to the crystallization of the adducts in essentially quantitative yield. Reduction of the amides by lithium aluminum hydride in tetrahydrofuran solution produces the desired amines, which are converted to desired halide by reaction of the methyl iodide with the amines. The inhibitor is useful in controlling corrosion such as that caused by CO2 and H2S. [Pg.92]

When the cathodic reaction is the reduction of oi n molecules for which the equilibrium potential is relatively high (much more anodic than the corrosion potential), the corrosion current is frequently controlled by the diffusion of hydrated o Q en molecules towards the corroding metal electrode thus, the corrosion ciurent equals the diffusion current of o en molecules as shown in Fig. 11-8. For this mode of diffusion-controlled corrosion of metals the cathodic Tafel constant is... [Pg.380]

Both batteries and fuei cells utilize controlled chemical reactions in which the desired process occurs electrochemically and all other reactions including corrosion are hopefully absent or severely kinetically suppressed. This desired selectivity demands careful selection of the chemical components including their morphology and structure. Nanosize is not necessarily good, and in present commercial lithium batteries, particle sizes are intentionally large. All batteries and fuel cells contain an electropositive electrode (the anode or fuel) and an electronegative electrode (the cathode or oxidant) between which resides the electrolyte. To ensure that the anode and cathode do not contact each other and short out the cell, a separator is placed between the two electrodes. Most of these critical components are discussed in this thematic issue. [Pg.4]

Flash Rusting (Bulk Paint and "Wet" Film Studies). The moderate conductivity (50-100 ohm-cm) of the water borne paint formulations allowed both dc potentiodynamic and ac impedance studies of mild steel in the bulk paints to be measured. (Table I). AC impedance measurements at the potentiostatically controlled corrosion potentials indicated depressed semi-circles with a Warburg diffusion low frequency tail in the Nyquist plots (Figure 2). These measurements at 10, 30 and 60 minute exposure times, showed the presence of a reaction involving both charge transfer and mass transfer controlling processes. The charge transfer impedance 0 was readily obtained from extrapolation of the semi-circle to the real axis at low frequencies. The transfer impedance increased with exposure time in all cases. [Pg.21]

A number of workers have studied this phenomenon [124,168 -170] and have concluded that the proper formation of this film determines the efficacy and reproducibility of the system, and that experimental data are consistent with a reaction controlled by the amount of surface area available on the anode film [171]. Also, the corrosion rate of nickel anodes is much lower in the presence of the organic reactant than the rate of corrosion in pure hydrogen fluoride, indicating that the anode reaction is modified by the presence of the organic. [Pg.230]

In this chapter you will learn that proper assessment of mass transport controlled corrosion reactions requires knowledge of the concentration distribution of the reacting species in solution, certain properties of the electrolyte, and the geometry of the system. A rigorous calculation of mass transport controlled reaction rates requires detailed information concerning these parameters. Fortunately, many of the governing equations have been solved for several well-defined geometries. [Pg.151]

Polarization of the galvanic cell. The different phenomena of polarization of the anodic and cathodic reactions (activation, diffusion, convection, etc.), should be well known as a function of the evolution and change of the properties of the interface as a function of time. The polarization behavior of the cathodic and anodic reactions on the two electrodes should be examined (see Figure 6.5). In natural atmospheres, the cathodic reaction controls frequently the attack rate. The diffusion of oxygen is an important parameter to avoid control and polarization of the corrosion by the rate of the cathodic reaction (Figure 6.12).7... [Pg.349]

Metals can also be electropolished to produce a smooth surface that is free of the deformed layer obtained by mechanical polishing I80]. The metal of interest is set up as the anode in a conducting liquid and undergoes a controlled corrosion reaction. [Pg.78]


See other pages where Reactions Control Corrosion is mentioned: [Pg.222]    [Pg.222]    [Pg.6]    [Pg.63]    [Pg.307]    [Pg.1069]    [Pg.838]    [Pg.381]    [Pg.12]    [Pg.504]    [Pg.579]    [Pg.59]    [Pg.81]    [Pg.176]    [Pg.126]    [Pg.152]    [Pg.170]    [Pg.277]    [Pg.285]    [Pg.327]    [Pg.341]    [Pg.386]    [Pg.159]    [Pg.177]    [Pg.283]    [Pg.291]    [Pg.333]    [Pg.317]    [Pg.786]    [Pg.742]    [Pg.2688]    [Pg.550]    [Pg.1208]   


SEARCH



Corrosion control

Corrosion reaction

© 2024 chempedia.info