Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction specific area

In this chapter shock modification of powders (their specific area, x-ray diffraction lines, and point defects) measurements via analytical electron microscopy, magnetization and Mossbauer spectroscopy shock activation of catalysis, solution, solid-state chemical reactions, sintering, and structural transformations enhanced solid-state reactivity. [Pg.160]

The retarding influence of the product barrier in many solid—solid interactions is a rate-controlling factor that is not usually apparent in the decompositions of single solids. However, even where diffusion control operates, this is often in addition to, and in conjunction with, geometric factors (i.e. changes in reaction interfacial area with a) and kinetic equations based on contributions from both sources are discussed in Chap. 3, Sect. 3.3. As in the decompositions of single solids, reaction rate coefficients (and the shapes of a—time curves) for solid + solid reactions are sensitive to sizes, shapes and, here, also on the relative dispositions of the components of the reactant mixture. Inevitably as the number of different crystalline components present initially is increased, the number of variables requiring specification to define the reactant completely rises the parameters concerned are mentioned in Table 17. [Pg.249]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

Stimulus molecules approach the receptor area in a random distribution. Therefore, there cannot be a homogeneous distribution of chemical or enzymic processing capabilities over the area, as this would produce a chaotic mass of information. The capabilities of such precise chemoreceptory discrimination that we observe can only arise from an ordered system in such a way that specific reaction-types would be localized, or at least be concentrated in specific areas of the epithelium. ... [Pg.327]

Ru(bipy)3 formed in this reaction is reduced by the sacrificial electron donor sodium ethylenediaminetetra-acetic acid, EDTA. Cat is the colloidal catalyst. With platinum, the quantum yield of hydrogenation was 9.9 x 10 . The yield for C H hydrogenation was much lower. However, it could substantially be improv l by using a Pt colloid which was covered by palladium This example demonstrates that complex colloidal metal catalysts may have specific actions. Bimetalic alloys of high specific area often can prepared by radiolytic reduction of metal ions 3.44) Reactions of oxidizing radicals with colloidal metals have been investigated less thoroughly. OH radicals react with colloidal platinum to form a thin oxide layer which increases the optical absorbance in the UV and protects the colloid from further radical attack. Complexed halide atoms, such as Cl , Br, and I, also react... [Pg.121]

With further understanding how molecular rotors interact with their environment and with application-specific chemical modifications, a more widespread use of molecular rotors in biological and chemical studies can be expected. Ratiometric dyes and lifetime imaging will enable accurate viscosity measurements in cells where concentration gradients exist. The examination of polymerization dynamics benefits from the use of molecular rotors because of their real-time response rates. Presently, the reaction may force the reporters into specific areas of the polymer matrix, for example, into water pockets, but targeted molecular rotors that integrate with the matrix could prevent this behavior. With their relationship to free volume, the field of fluid dynamics can benefit from molecular rotors, because the applicability of viscosity models (DSE, Gierer-Wirtz, free volume, and WLF models) can be elucidated. Lastly, an important field of development is the surface-immobilization of molecular rotors, which promises new solid-state sensors for microviscosity [145]. [Pg.300]

Other studies in this specific area are also based on the catalytic effect of a variety of metal ions such as copper (II), cobalt (II), nickel (II), iron (III), and manganese (II) on the luminol-hydrogen peroxide reaction providing a rapid and efficient detection mode for these five ions, when an online CL detector is used before separation by CE [88], This contribution combines capillary ion analysis (CIA) and CL detection by means of a postcapillary reactor similar to the one originally developed by Rose and Jorgenson [80] and finally modified by Wu... [Pg.454]

The schemes considered are only a few of the variety of combinations of consecutive first-order and second-order reactions possible including reversible and irreversible steps. Exact integrated rate expressions for systems of linked equilibria may be solved with computer programs. Examples other than those we have considered are rarely encountered however except in specific areas such as oscillating reactions or enzyme chemistry, and such complexity is to be avoided if at all possible. [Pg.31]

The use of free-radical reactions in organic synthesis started with the reduction of functional groups. The purpose of this chapter is to give an overview of the relevance of silanes as efficient and effective sources for facile hydrogen atom transfer by radical chain processes. A number of reviews [1-7] have described some specific areas in detail. Reaction (4.1) represents the reduction of a functional group by silicon hydride which, in order to be a radical chain process, has to be associated with initiation, propagation and termination steps of the radical species. Scheme 4.1 illustrates the insertion of Reaction (4.1) in a radical chain process. [Pg.49]

Fig. 15. Variation of the NMR-based specific area of hydrated material as a function of the hydration time (main figure) and the extent, a (%), of chemical reactions (insert). Fig. 15. Variation of the NMR-based specific area of hydrated material as a function of the hydration time (main figure) and the extent, a (%), of chemical reactions (insert).
When the same chemical compositions of the reactants are used to generate both types of flame, the chemical reaction rate is considered to be the same in both cases. However, the reaction surface area of the turbulent flame is increased due to the nature of eddies and the overall reaction rate at the combustion wave appears to be much higher than that in the case of the laminar flame. Furthermore, the heat transfer process from the burned gas to the unburned gas in the combustion wave is different because of the thermophysical properties specifically, the thermal diffu-sivity is higher for the turbulent flame than for the laminar flame. Thus, the flame speed of a turbulent flame appears to be much higher than that of a laminar flame. [Pg.42]

With each of the C, P and S centers, compounds with several oxidation states are possible, thus multiplying the types of nucleophilic reactions extant. Importantly, the types of compounds cover a variety of classes each with its characteristic behaviors and reactivities, each defining a specific area in chemistry. Since the C, P and S reactive centers are incorporated in the majority of molecules in living systems it follows that the chemistry to be considered in this chapter is closely tied with the chemistry of life, i.e. bioorganic reaction mechanisms. It is known in fact that many organophosphorus and organosulfur compounds are toxic toward mammalian organisms which renders their destruction under mild conditions of critical importance. [Pg.818]

This observation was not so obvious on coke yields because the coke production is a contribution of mnltiple mechanisms and reactions. Thus, the coke yields are quite similar, probably because the catalytic coke is decreased while the contaminant coke is increased. The coke remarks are also observed on the CPS samples taking into account that the dehydrogenation degree is not strongly affected by the extended ReDox cycles, becanse the lower catalysts decay is limiting the effect of the required mass of catalyst (C/0 ratio). Thus, the small decrement of the coke yield on the CPS samples is possibly related to the descent of the catalyst (less specific area) leaving less available space for coke adsorption and less activity for catalytic coke production. It is clear that prolonging the deactivation procednres is not beneficial as far as the metal effects are concerned. [Pg.138]

One of the important applications of mono- and multimetallic clusters is to be used as catalysts [186]. Their catalytic properties depend on the nature of metal atoms accessible to the reactants at the surface. The possible control through the radiolytic synthesis of the alloying of various metals, all present at the surface, is therefore particularly important for the catalysis of multistep reactions. The role of the size is twofold. It governs the kinetics by the number of active sites, which increase with the specific area. However, the most crucial role is played by the cluster potential, which depends on the nuclearity and controls the thermodynamics, possibly with a threshold. For example, in the catalysis of electron transfer (Fig. 14), the cluster is able to efficiently relay electrons from a donor to an acceptor, provided the potential value is intermediate between those of the reactants [49]. Below or above these two thresholds, the transfer to or from the cluster, respectively, is thermodynamically inhibited and the cluster is unable to act as a relay. The optimum range is adjustable by the size [63]. [Pg.603]

The value of the turnover frequency can be reproduced in different laboratories, if the method of measurement of the rate and the counting of sites are kept the same. Moreover, the use of turnover frequency allows the comparison between two catalysts that differ in metal or size for a specific reaction. The great advantage of such a comparison is that the activity of different catalysts is compared at active site level without the considerations of catalyst arrangement. To be more specific, using turnover frequency, we can compare the activity of the pure active site, ignoring the specific area of the catalyst. [Pg.65]

The solid provides an extended surface to the reaction or adsorption to take place. The area provided by the solid is the sum of the exterior and interior ones. Consequently, the solid surface includes not only the geometrical one as determined from the solid s shape but also the interior surface that is the result of its porous structure. The surface area is expressed as specific surface area in units of m2/g. Its value may be from a few m2/g up to hundreds of m2/g. In the case of a porous solid, the interior surface constitutes the greatest percentage of the total surface, and high values of specific surface area may be achieved. Specifically, the specific area of an activated carbon can reach the value of 1500 m2/g. So, the available area for a hydrocarbon to react on 4 g of activated carbon is equal to that of a football field. [Pg.228]

To summarize, we note two key points. Firstly, that the favourable interaction between DA and D + A in allowed reactions does not preclude barrier formation. The CM model, by its very nature, emphasizes barrier formation through the avoided crossing of reactant and product configurations. Second, the CM model gives rise to the Woodward-Hoffmann rules through consideration of the symmetry properties of the DA and D+A-configurations. This is as it should be. As we have noted previously, a key test of the CM model is whether it blends in naturally with existing theories that focus on specific areas of reactivity. 4... [Pg.177]

As well as the previous chapter on the Hammett equation,1 the importance of the approach has found expression in specific areas in other contributions to these volumes side chain reactivities of thiophenes 17 tautomerism 18 reactions of azines with nucleophiles 19,20 formation of benzofuroxans by decomposition of o-nitrophenyl azides 21 acid dis-... [Pg.4]

Although adsorption exists as a subject of scientific investigation independent of its role in heterogeneous catalysis, it requires particular attention here because of its central role in heterogeneous catalysis. Most or all catalytic reactions involve the adsorption of at least one of the reactants. Many terms related to adsorption have already been defined in Appendix II, Part I, 1.1. These include surface, interface, area of surface or interface, and specific surface area. Appendix II, Part I, recommends A or S and a or s as symbols for area and specific area, respectively. As and as may be used to avoid confusion with Helmholtz energy A or entropy S where necessary. [Pg.355]


See other pages where Reaction specific area is mentioned: [Pg.173]    [Pg.50]    [Pg.178]    [Pg.227]    [Pg.371]    [Pg.452]    [Pg.588]    [Pg.218]    [Pg.31]    [Pg.395]    [Pg.45]    [Pg.241]    [Pg.213]    [Pg.77]    [Pg.54]    [Pg.389]    [Pg.6]    [Pg.341]    [Pg.51]    [Pg.274]    [Pg.432]    [Pg.11]    [Pg.129]    [Pg.1256]    [Pg.178]    [Pg.406]    [Pg.784]    [Pg.452]    [Pg.588]    [Pg.49]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Reaction specificity

Specific area

© 2024 chempedia.info