Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid supported reactions

The renaissance of solid supported reagents and parallel synthesis during the last fifteen years found numerous applications in the Mitsunobu reaction. Solid-supported triphenylphosphine and azadicarboxylate reagents were developed to aid in the purification of Mitsunobu reactions or help with difficult reactions. These reagents have become commercially available. In addition, important yield-limiting reactants were tethered to solid supports... [Pg.676]

Combinatorial chemistry has significantly increased the nurnjjers of molecules that can be synthesised in a modern chemical laboratory. The classic approach to combinatorial synthesis involves the use of a solid support (e.g. polystyrene beads) together with a scheme called split-mix. Solid-phase chemistry is particularly appealing because it permits excess reagent to be used, so ensuring that the reaction proceeds to completion. The excess... [Pg.727]

Base catalysis is most effective with alkali metals dispersed on solid supports or, in the homogeneous form, as aldoxides, amides, and so on. Small amounts of promoters form organoalkali comnpounds that really contribute the catalytic power. Basic ion exchange resins also are usebil. Base-catalyzed processes include isomerization and oligomerization of olefins, reactions of olefins with aromatics, and hydrogenation of polynuclear aromatics. [Pg.2094]

At the time of writing this book, SPOS is in an area of reladve infancy but has considerable potential. One of the main difficulties in SPOS lies in the lack of techniques available to monitor reacdons carried out on polymer supports. Unlike reacdons in solution phase, reactions on solid support cannot be monitored with relative ease and this has hindered the progress as well as the efficacy of solid supported synthesis of small non-peptidic molecules. Despite these difficulties, a large body of studies is available for SPOS. Recent reviews incorporate... [Pg.73]

There is a large range of resins available for SPOS. These resins are derivatised polymer supports with a range of linkers. The roles of linkers are (i) to provide point(s) of attachment for the tethered molecule, akin to a solid supported protecting group(s), (ii) to provide distance from the polymeric backbone in order to minimise interactions with the backbone, (iii) to enable cleavage of product molecules under conditions compatible with the stability of the molecules and the reaction conditions employed for chemical transformations. Hence in order to... [Pg.74]

Chapters 1 and 2 have been reorganised and updated in line with recent developments. A new chapter on the Future of Purification has been added. It outlines developments in syntheses on solid supports, combinatorial chemistry as well as the use of ionic liquids for chemical reactions and reactions in fluorous media. These technologies are becoming increasingly useful and popular so much so that many future commercially available substances will most probably be prepared using these procedures. Consequently, a knowledge of their basic principles will be helpful in many purification methods of the future. [Pg.621]

Gels made in this way have virtually no usable porosity and are called Jordi solid bead packings. They can be used in the production of low surface area reverse phase packings for fast protein analysis and in the manufacture of hydrodynamic volume columns as well as solid supports for solid-phase syntheses reactions. An example of a hydrodynamic volume column separation is shown in Fig. 13.2 and its calibration plot is shown in Fig. 13.3. The major advantage of this type of column is its ability to resolve very high molecular weight polymer samples successfully. [Pg.369]

The Pictet-Spengler reaction has been carried out on various solid support materials " and with microwave irradiation activation.Diverse structural analogues of (-)-Saframycin A have been prepared by carrying out the Pictet-Spengler isoquinoline synthesis on substrates attached to a polystyrene support. Amine 20 was condensed with aldehyde 21 followed by cyclization to give predominantly the cis isomer tetrahydroisoquinoline 22 which was further elaborated to (-)-Saframycin A analogues. [Pg.471]

The intramolecular condensation reaction of diesters, the Dieckmann condensation, works best for the formation of 5- to 7-membered rings larger rings are formed with low yields, and the acyloin condensation may then be a faster competitive reaction. With non-symmetric diesters two different products can be formed. The desired product may be obtained regioselectively by a modified procedure using a solid support—e.g with a polystyrene 10 ... [Pg.57]

In contrast, there are fewer limitations from the chemical point of view. The preparation of large, well-defined, libraries that involve amino acid building blocks has been demonstrated many times. Carefully optimized reaction conditions for the preparation of other mixed libraries can also ensure that each desired compound is present in sufficient amount. However, the reaction rates of some individual selectors with the activated solid support may be lower than that of others. As a result, the more reactive selectors would occupy a majority of the sites within the beads. Since the most reactive selectors may not be the most selective, testing of a slightly larger number of specifically designed CSPs may be required to reduce the effect of falsenegative results. [Pg.90]

The ability of iron(III) chloride genuinely to catalyze Friedel-Crafts acylation reactions has also been recognized by Holderich and co-workers [97]. By immobilizing the ionic liquid [BMIM]Cl/FeCl3 on a solid support, Holderich was able to acetylate mesitylene, anisole, and m-xylene with acetyl chloride in excellent yield. The performance of the iron-based ionic liquid was then compared with that of the corresponding chlorostannate(II) and chloroaluminate(III) ionic liquids. The results are given in Scheme 5.1-67 and Table 5.1-5. As can be seen, the iron catalyst gave superior results to the aluminium- or tin-based catalysts. The reactions were also carried out in the gas phase at between 200 and 300 °C. The acetylation reac-... [Pg.207]

Under certain condition, however, reactions are still preferably conducted in solution. This is the case e.g., for heterogeneous reactions and for conversions, which deliver complex product mixtures. In the latter case, further conversion of this mixture on the solid support is not desirable. In these instances, the combination of solution chemistry with polymer-assisted conversions can be an advantageous solution. Polymer-assisted synthesis in solution employs the polymer matrix either as a scavenger or for polymeric reagents. In both cases the virtues of solution phase and solid supported chemistry are ideally combined allowing for the preparation of pure products by filtration of the reactive resin. If several reactive polymers are used sequentially, multi-step syntheses can be conducted in a polymer-supported manner in solution as well. As a further advantage, many reactive polymers can be recycled for multiple use. [Pg.382]

There is a wide variety of solid electrolytes and, depending on their composition, these anionic, cationic or mixed conducting materials exhibit substantial ionic conductivity at temperatures between 25 and 1000°C. Within this very broad temperature range, which covers practically all heterogeneous catalytic reactions, solid electrolytes can be used to induce the NEMCA effect and thus activate heterogeneous catalytic reactions. As will become apparent throughout this book they behave, under the influence of the applied potential, as active catalyst supports by becoming reversible in situ promoter donors or poison acceptors for the catalytically active metal surface. [Pg.3]

The Diels-Alder reaction on solid support was first performed 20 years ago and is now a consolidated procedure [2b]. [Pg.143]

To generate molecular libraries, a series of 5-oxo-2-azabicyclo[2.2.2]octane and triaza analogs were prepared via a stereospecific Diels-Alder reaction by reacting Wang-resin-bound diene 35 with a variety of dienophiles [28]. After removing the solid support with a strong acid, adducts 36 were isolated examples of reactions that have furnished the best yields are reported in Scheme 4.6. [Pg.152]

Table 4.11 Diels-Alder reactions of 50 and 51 with 52 and 53 in the presence of a solid support... Table 4.11 Diels-Alder reactions of 50 and 51 with 52 and 53 in the presence of a solid support...
Microwave irradiation has been used to accelerate the Gewald reaction for the one-pot synthesis of N-acyl aminothiophenes on solid support [67]. A suspension of cyanoacetic acid Wang resin 35, elemental sulfur, DBU and an aldehyde or ketone 36 in toluene was irradiated for 20 min at 120 °C in a single-mode microwave synthesizer (Scheme 13). Acyl chloride 37 was added, followed by DIPEA, and the mixture was irradiated for 10 min at 100 °C. After cooling to room temperature, the washed resin was treated with a TEA solution to give M-acylated thiophenes 38 in 81-99% yield and purities ranging from 46-99%. [Pg.42]

The description of the association of heterocychc chemistry and microwave irradiation has also shown that performing microwave-assisted reactions should be considered with special attention. A few of these considerations can be applied generally for conducting microwave-assisted reactions and include the following (a) the ratio between the quantity of the material and the support (e.g., graphite) or the solvent is very important (b) for solid starting materials, the use of solid supports can offer operational, economical and environmental benefits over conventional methods. However, association of liquid/solid reactants on solid supports may lead to uncontrolled reactions which may result in worse results than the comparative conventional thermal reactions. In these cases, simple fusion of the products or addition of an appropriate solvent may lead to more convenient mixtures or solutions for microwave-assisted reactions. [Pg.77]

Since 1986, when the very first reports on the use of microwave heating to chemical transformations appeared [147,148], microwave-assisted synthesis has been shown to accelerate most solution-phase chemical reactions [24-27,32,35]. The first application of microwave irradiation for the acceleration of reaction rate of a substrate attached to a solid support (SPPS) was performed in 1992 [36]. Despite the promising results, microwave-assisted soHd-phase synthesis was not pursued following its initial appearance, most probably as a result of the lack of suitable instriunentation. Reproducing reaction conditions was nearly impossible because of the differences between domestic microwave ovens and the difficulties associated with temperature measurement. The technique became a Sleeping Beauty interest awoke almost a decade later with the publication of several microwave-assisted SPOS protocols [37,38,73,139,144]. There has been an extensive... [Pg.89]

In 2003, the microwave-assisted coupUng of aryl hahdes with acetylenes using a palladium catalyst were carried out employing a modified Smith Process vial [49]. These vessels, equipped with a polypropylene frit and screw cap at the bottom, and sealed with an aluminum crimp cap fitted with a silicon septum at the top (Fig. 8), faciUtated the processing of approximately 1 g of solid support. Notably, they are compatible with stirring of the reaction mixture and monitoring of the temperature and pressure. [Pg.90]


See other pages where Solid supported reactions is mentioned: [Pg.12]    [Pg.12]    [Pg.728]    [Pg.235]    [Pg.342]    [Pg.75]    [Pg.621]    [Pg.197]    [Pg.355]    [Pg.364]    [Pg.69]    [Pg.71]    [Pg.258]    [Pg.263]    [Pg.199]    [Pg.149]    [Pg.12]    [Pg.53]    [Pg.74]    [Pg.81]    [Pg.82]    [Pg.83]    [Pg.84]    [Pg.84]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Asymmetric Addition Reactions on Solid Supports

Cleavage reactions, solid support catalysts

Cross-coupling reactions on solid supports

Cross-coupling reactions solid support catalysts

Heck reaction on solid support

Heck reaction solid support catalysts

Intermolecular Heck reaction, solid support

Intermolecular reactions solid support catalysts

Microwave-assisted Solventless Reactions on Solid Supports

Non-transition Metal-Mediated Solid-Supported Reactions

Radical Reactions on Solid Support

Reactions Catalyzed by Solid-Supported IL Heterogeneous Catalysis with Homogeneous Performance

Solid support

Solid support catalysts Stille reactions

Solid support catalysts intramolecular reaction

Solid support catalysts multicomponent reactions

Solid-phase-supported domino reactions

Solid-supported

Solid-supported Friedel-Crafts acylation reaction scheme

Solid-supported radical reaction

Sonogashira reaction solid support catalysts

The Mizoroki-Heck Reaction on Solid Supports

The use of solid supports and supported reagents in liquid phase organic reactions

Triflates solid support catalysts. Suzuki reactions

Ugi Reaction with Solid-Supported Carboxylic Acid

Ugi Reaction with Solid-Supported Isonitriles

© 2024 chempedia.info