Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer coefficient reaction

Ka K, k L Adsorption constant Chemical equilibrium constant Specific rate constant of reaction, mass-transfer coefficient Length of path in reactor m ft... [Pg.3]

Henry constant for absorption of gas in liquid Free energy change Heat of reaction Initiator for polymerization, modified Bessel functions, electric current Electric current density Adsorption constant Chemical equilibrium constant Specific rate constant of reaction, mass-transfer coefficient Length of path in reactor Lack of fit sum of squares Average molecular weight in polymers, dead polymer species, monomer Number of moles in electrochemical reaction Molar flow rate, molar flux Number chain length distribution Number molecular weight distribution... [Pg.835]

The right-hand side of this relationship is equivalent to k+ - QIK), so this equation is valid for both dissolution and precipitation at near-equilibrium conditions. Equation (7.44) can also be written in terms of a reaction mass transfer coefficient m/sec). [Pg.144]

Write the equations necessary for the calculation of conversion according to the Kunii-Levenspiel model for a second-order reaction, for which Rq — /c = krC. Note that an overall reaction-mass transfer coefficient such as the one in Eq. 11.19 cannot be expressed explicitly. [Pg.222]

Mass-Transfer Coefficients with Chemical Reaction. Chemical reaction can occur ia any of the five regions shown ia Figure 3, ie, the bulk of each phase, the film ia each phase adjacent to the iaterface, and at the iaterface itself. Irreversible homogeneous reaction between the consolute component C and a reactant D ia phase B can be described as... [Pg.64]

The enhanced rate expressions for regimes 3 and 4 have been presented (48) and can be appHed (49,50) when one phase consists of a pure reactant, for example in the saponification of an ester. However, it should be noted that in the more general case where component C in equation 19 is transferred from one inert solvent (A) to another (B), an enhancement of the mass-transfer coefficient in the B-rich phase has the effect of moving the controlling mass-transfer resistance to the A-rich phase, in accordance with equation 17. Resistance in both Hquid phases is taken into account in a detailed model (51) which is apphcable to the reversible reactions involved in metal extraction. This model, which can accommodate the case of interfacial reaction, has been successfully compared with rate data from the Hterature (51). [Pg.64]

R is rate of reaction per unit area, a is interfacial area per unit volume, S is solubiHty of solute in continuous phase, D is diffusivity of solute, k is rate constant, kj is mass-transfer coefficient, is concentration of reactive species, and Z is stoichiometric coefficient. When Dk is considerably greater (10 times) than Ra = aS Dk. [Pg.430]

For weU-defined reaction zones and irreversible, first-order reactions, the relative reaction and transport rates are expressed as the Hatta number, Ha (16). Ha equals (k- / l ) where k- = reaction rate constant, = molecular diffusivity of reactant, and k- = mass-transfer coefficient. Reaction... [Pg.509]

It is important to understand that when chemical reactions are involved, this definition of Cl is based ou the driving force defined as the difference between the couceutratiou of un reacted solute gas at the interface and in the bulk of the liquid. A coefficient based ou the total of both uureacted and reached gas could have values. smaller than the physical-absorption mass-transfer coefficient /c . [Pg.620]

Extrapolation of KgO data for absorption and stripping to conditions other than those for which the origin measurements were made can be extremely risky, especially in systems involving chemical reactions in the liquid phase. One therefore would be wise to restrict the use of overall volumetric mass-transfer-coefficient data to conditions not too far removed from those employed in the actual tests. The most reh-able data for this purpose would be those obtained from an operating commercial unit of similar design. [Pg.625]

Traditional Design Method The traditionally employed conventional procedure for designing packed-tower gas-absorption systems involving chemical reactions makes use of overall volumetric mass-transfer coefficients as defined by the equation... [Pg.1364]

In 1966, in a paper that now is considered a classic, Danckwerts and Gillham [Tmns. Inst. Chem. Eng., 44, T42 (1966)] showed that data taken in a small stirred-ceU laboratoiy apparatus could be used in the design of a packed-tower absorber when chemical reactions are involved. They showed that if the packed-tower mass-transfer coefficient in the absence of reaction (/cf) can be reproduced in the laboratory unit, then the rate of absorption in the l oratoiy apparatus will respond to chemical reactions in the same way as in the packed column even though the means of agitating the hquid in the two systems might be quite different. [Pg.1366]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

Inspection of Eqs. (14-71) and (14-78) reveals that for fast chemical reactions which are liquid-phase mass-transfer limited the only unknown quantity is the mass-transfer coefficient /cl. The problem of rigorous absorber design therefore is reduced to one of defining the influence of chemical reactions upon k. Since the physical mass-transfer coefficient /c is already known for many tower packings, it... [Pg.1367]

Estimation of for Irreversible Reactions Figure 14-14 illustrates the influence of either first- or second-order irreversible chemical reactions on the mass-transfer coefficient /cl as developed by Van Krevelen and Hoftyzer [Rec. Trav. Chim., 67, 563 (1948)] and as later refined by Periy and Pigford and by Brian et al. [Am. Inst. Chem. Eng. /., 7, 226(1961)]. [Pg.1367]

Reaction between an absorbed solute and a reagent reduces the equilibrium partial pressure of the solute, thus increasing the rate of mass transfer. The mass-transfer coefficient hkewise is enhanced, which contributes further to increased absorption rates. Extensive theoretical analyses of these effects have been made, but rather less experimental work and design guidehnes. [Pg.2105]

With a reactive solvent, the mass-transfer coefficient may be enhanced by a factor E so that, for instance. Kg is replaced by EKg. Like specific rates of ordinary chemical reactions, such enhancements must be found experimentally. There are no generalized correlations. Some calculations have been made for idealized situations, such as complete reaction in the liquid film. Tables 23-6 and 23-7 show a few spot data. On that basis, a tower for absorption of SO9 with NaOH is smaller than that with pure water by a factor of roughly 0.317/7.0 = 0.045. Table 23-8 lists the main factors that are needed for mathematical representation of KgO in a typical case of the absorption of CO9 by aqueous mouethauolamiue. Figure 23-27 shows some of the complex behaviors of equilibria and mass-transfer coefficients for the absorption of CO9 in solutions of potassium carbonate. Other than Henry s law, p = HC, which holds for some fairly dilute solutions, there is no general form of equilibrium relation. A typically complex equation is that for CO9 in contact with sodium carbonate solutions (Harte, Baker, and Purcell, Ind. Eng. Chem., 25, 528 [1933]), which is... [Pg.2106]

TABLE 23-9 Mass-Transfer Coefficients/ Interfacial Areas and Liquid Holdup in Gas/Liquid Reactions... [Pg.2109]

In order to allow integration of countercurrent relations like Eq. (23-93), point values of the mass-transfer coefficients and eqiiilibrium data are needed, over ranges of partial pressure and liquid-phase compositions. The same data are needed for the design of stirred tank performance. Then the conditions vary with time instead of position. Because of limited solubihty, gas/liquid reactions in stirred tanks usually are operated in semibatch fashion, with the liquid phase charged at once, then the gas phase introduced gradually over a period of time. CSTR operation rarely is feasible with such systems. [Pg.2110]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

When liquid/liquid contactors are used as reacdors, values of their mass-transfer coefficients may be enhanced by reaction, analogously to those of gas/liquid processes, but there do not seem to be any published data of this nature. [Pg.2118]

K is mass transfer coefficient, J is mass rate of reaction... [Pg.296]

This equation is that of a first-order reaction process, and thus the fraction of material electrolysed at any instant is independent of the initial concentration. It follows that if the limit of accuracy of the determination is set at C, = 0.001 C0, the time t required to achieve this result will be independent of the initial concentration. The constant k in the above equation can be shown to be equal to Am/ V, where A is the area of the pertinent electrode, V the volume of the solution and m the mass transfer coefficient of the electrolyte.20 It follows that to make t small A and m must be large, and V small, and this leads to the... [Pg.530]

The carbon source affects oxygen demand. In penicillin production, oxygen demand for glucose is 4.9 mol 1 1 h-1. The lactose concentration is 6.7 mol 1 1 h 1, sucrose is 13.4 mol l-1 h. The yield of oxygen per mole of carbon source for CH4 is YQjC = 1.34, T0j/C for Paraffins = 1, and Y(> /c for hydrocarbon (CH20)n = 0.4. The mass transfer coefficient k,a is for gas-liquid reactions, and the film thickness where the mass transfer takes place is 8... [Pg.32]

The mass transfer coefficient is calculated for a given diffusivity coefficient and reaction rate constant at the equilibrium concentration of oxygen. When oxygen is continuously transported and removed from the liquid phase we may write ... [Pg.33]

In spite of its wide application, the mechanisms of this reaction remain obscure. Many diverse arguments have been published since the reaction was first investigated in 1897 (Bl, C5, C9, F7, J6, M5, P9, R2, S5, W2, W4, Yl, Y4). Cooper et al. (C9) introduced this method as a yardstick for the measurement of volumetric mass-transfer coefficients in gas-liquid contacting. Karow et al. (Kl) later concluded that the sulfite oxidation is suitable for fermentation process scale-up studies. Cooper et al. established that the reaction proceeds at a rate independent of sulfite ion concentration over wide concentration ranges. In their work they considered the sulfite oxidation to be of zero order with respect to both sulfite and sulfate concentration. [Pg.300]

In evaluating their results they assumed the film theory, and, because the oxygen is sparingly soluble and the chemical reaction rate high, they also assumed that the liquid film is the controlling resistance. The results were calculated as a volumetric mass-transfer coefficient based, however, on the gas film. They found that the volumetric mass-transfer coefficient increased with power input and superficial gas velocity. Their results can be expressed as follows ... [Pg.303]


See other pages where Mass transfer coefficient reaction is mentioned: [Pg.44]    [Pg.844]    [Pg.898]    [Pg.479]    [Pg.486]    [Pg.387]    [Pg.44]    [Pg.844]    [Pg.898]    [Pg.479]    [Pg.486]    [Pg.387]    [Pg.23]    [Pg.64]    [Pg.501]    [Pg.53]    [Pg.589]    [Pg.604]    [Pg.617]    [Pg.620]    [Pg.620]    [Pg.1364]    [Pg.1367]    [Pg.1367]    [Pg.1424]    [Pg.2115]    [Pg.319]   
See also in sourсe #XX -- [ Pg.264 , Pg.281 ]




SEARCH



Hydrogen oxidation reaction mass transfer coefficient

Liquid film reaction mass transfer coefficients

Mass coefficient

Mass transfer coefficient

Mass transfer coefficients with chemical reaction

Mass transfer reaction

Reaction coefficients

© 2024 chempedia.info