Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction kinetics Carbonate

Thermodynamically carlxMi is less stable in acid media than, for example, Pt, but due to the slow reaction kinetics, carbon can still be used in fuel cell [143]. Carbon (graphite) can be electrochemically oxidized to CO2 at quite low potentials ... [Pg.286]

The maximum surface carbon content is usually set by the gas composition via the equiUbtium constant. If the gas reaction kinetics deposit carbon at a rate which carmot be equaled by the diffusion of carbon into the steel, then the surface value may be less than the possible equiUbtium value. [Pg.214]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

CO oxidation catalysis is understood in depth because potential surface contaminants such as carbon or sulfur are burned off under reaction conditions and because the rate of CO oxidation is almost independent of pressure over a wide range. Thus ultrahigh vacuum surface science experiments could be done in conjunction with measurements of reaction kinetics (71). The results show that at very low surface coverages, both reactants are adsorbed randomly on the surface CO is adsorbed intact and O2 is dissociated and adsorbed atomically. When the coverage by CO is more than 1/3 of a monolayer, chemisorption of oxygen is blocked. When CO is adsorbed at somewhat less than a monolayer, oxygen is adsorbed, and the two are present in separate domains. The reaction that forms CO2 on the surface then takes place at the domain boundaries. [Pg.176]

The reactions are highly exothermic. Under Uquid-phase conditions at about 200°C, the overall heat of reaction is —83.7 to —104.6 kJ/mol (—20 to —25 kcal/mol) ethylene oxide reacting (324). The opening of the oxide ring is considered to occur by an ionic mechanism with a nucleophilic attack on one of the epoxide carbon atoms (325). Both acidic and basic catalysts accelerate the reactions, as does elevated temperature. The reaction kinetics and product distribution have been studied by a number of workers (326,327). [Pg.415]

Except as an index of respiration, carbon dioxide is seldom considered in fermentations but plays important roles. Its participation in carbonate equilibria affects pH removal of carbon dioxide by photosynthesis can force the pH above 10 in dense, well-illuminated algal cultures. Several biochemical reactions involve carbon dioxide, so their kinetics and equilibrium concentrations are dependent on gas concentrations, and metabolic rates of associated reactions may also change. Attempts to increase oxygen transfer rates by elevating pressure to get more driving force sometimes encounter poor process performance that might oe attributed to excessive dissolved carbon dioxide. [Pg.2139]

Together with a shift of the proton from the a-carbon to the alkoxide oxygen, the tertiary amine is eliminated from the addition product to yield the unsaturated product 3. Early examples of the Baylis-Hillman reaction posed the problem of low conversions and slow reaction kinetics, which could not be improved with the use of simple tertiary amines. The search for catalytically active substances led to more properly adjusted, often highly specific compounds, with shorter reaction times." Suitable catalysts are, for example, the nucleophilic, sterically less hindered bases diazabicyclo[2.2.2]octane (DABCO) 6, quinuclidin-3-one 7 and quinuclidin-3-ol (3-QDL) 8. The latter compound can stabilize the zwitterionic intermediate through hydrogen bonding. ... [Pg.29]

Table 3.6 Kinetic Data for Reactions of Carbon-Centered Radicals... Table 3.6 Kinetic Data for Reactions of Carbon-Centered Radicals...
A full development of the rate law for the bimolecular reaction of MDI to yield carbodiimide and CO indicates that the reaction should truly be 2nd-order in MDI. This would be observed experimentally under conditions in which MDI is at limiting concentrations. This is not the case for these experimements MDI is present in considerable excess (usually 5.5-6 g of MDI (4.7-5.1 ml) are used in an 8.8 ml vessel). So at least at the early stages of reaction, the carbon dioxide evolution would be expected to display pseudo-zero order kinetics. As the amount of MDI is depleted, then 2nd-order kinetics should be observed. In fact, the asymptotic portion of the 225 C Isotherm can be fitted to a 2nd-order rate law. This kinetic analysis is consistent with a more detailed mechanism for the decomposition, in which 2 molecules of MDI form a cyclic intermediate through a thermally allowed [2+2] cycloaddition, which is formed at steady state concentrations and may then decompose to carbodiimide and carbon dioxide. Isocyanates and other related compounds have been reported to participate in [2 + 2] and [4 + 2] cycloaddition reactions (8.91. [Pg.435]

Absorption rates of carbon dioxide were measured in organic solutions of glycidyl methacrylate at 101.3 kPa to obtain the reaction kinetics between carbon dioxide and glycidyl methacrylate using tricaprylylmethylammonium chloride(Aliquat 336) as catalysts. The reaction rate constants were estimated by the mass transfer mechanism accompanied by the pseudo-first-order fast reaction. An empirical correlation between the reaction rate constants and the solubility parameters of solvents, such as toluene, A-methyl-2-pirrolidinone, and dimethyl sulfoxide was presented. [Pg.345]

Wang H, Jusys Z, Behm RJ. 2004. Ethanol electrooxidation on a carbon-supported Pt catalyst Reaction kinetics and product yields. J Phys Chem B 108 19413-19424. [Pg.464]

Once the reaction kinetics were determined and the appropriate reaction conditions were set, the analyses of different catalysts was launched. A variety of different heterogeneous catalysts were evaluated for the deprotection of 20 mmol Cbz-glycine (1, R=-H). Catalysts composed of different platinum group metals supported on activated carbon were evaluated as well as palladium supported on alumina. Figure 5 confirms that Pd supported on activated carbon is indeed the catalyst of choice for this type of hydrogenolysis reaction. [Pg.488]

As an example, consider an early calculation of isotope effects on enzyme kinetics by Hwang and Warshel [31]. This study examines isotope effects on the catalytic reaction of carbonic anhydrase. The expected rate-limiting step is a proton transfer reaction from a zinc-bound water molecule to a neighboring water. The TST expression for the rate constant k is... [Pg.415]

This overview is organized into several major sections. The first is a description of the cluster source, reactor, and the general mechanisms used to describe the reaction kinetics that will be studied. The next two sections describe the relatively simple reactions of hydrogen, nitrogen, methane, carbon monoxide, and oxygen reactions with a variety of metal clusters, followed by the more complicated dehydrogenation reactions of hydrocarbons with platinum clusters. The last section develops a model to rationalize the observed chemical behavior and describes several predictions that can be made from the model. [Pg.48]

Cofacial ruthenium and osmium bisporphyrins proved to be moderate catalysts (6-9 turnover h 1) for the reduction of proton at mercury pool in THF.17,18 Two mechanisms of H2 evolution have been proposed involving a dihydride or a dihydrogen complex. A wide range of reduction potentials (from —0.63 V to —1.24 V vs. SCE) has been obtained by varying the central metal and the carbon-based axial ligand. However, those catalysts with less negative reduction potentials needed the use of strong acids to carry out the catalysis. These catalysts appeared handicapped by slow reaction kinetics. [Pg.475]

However, a more accurate comparison between the experimental reaction kinetics and the predictions of the dissociative electron transfer theory revealed that the agreement is good when steric hindrance is maximal (tertiary carbon acceptors) and that the reaction is increasingly faster than predicted as steric hindrance decreases.31 These results were interpreted as indicating an increase... [Pg.178]

The assessment of reaction kinetics by means of batch tests may be strongly affected by dye adsorption on the biophase and supports. The relevance of the adsorption phenomena of dyes on biophase has been addressed in studies regarding free cells [41], granular support biofilm [24], entrapped cells [11, 18], anaerobic sludge [10,24,31,34] and biological activated carbon (BAC) [42,45,47,48]. They have pointed out that the kinetics may be overestimated if the assessment of the adsorption contribution to the dye removal is not taken into account. Under batch conditions, the dye is fastly split between the liquid phase and the biophase, resulting in a sharp reduction of the dye concentration in the liquid phase until adsorption equilibrium is approached. The rate of dye adsorption must be estimated and ruled out in the kinetic assessment. [Pg.113]

Step 1 is fundamentally an SN2 reaction (kinetics related to structural variations of the reactants,16 8 retention of stereochemistry at phosphorus912), except in those instances wherein a particularly stable carbocation is produced from the haloalkane component.13 A critical experiment concerned with verification of the Sn2 character of Step 1 by inversion of configuration at the carbon from which the leaving group is displaced was inconclusive because elimination rather than substitution occurred with the chiral secondary haloalkane used.14 An alternative experiment suggested by us in our prior review using a chiral primary substrate apparently has not yet been performed.2... [Pg.43]

The antiaromatic region is not important for the reactivity of the parent enediyne because the activation energy is determined only by the energy difference between the reactant and the TS. However, for the cyclic enediynes in Fig. 7 in which the C1-C6 distances are 3.39 and 2.92 A, respectively, antiaromaticity of the reactant should be relevant to the reaction kinetics. In addition, the role of repulsion between the in-plane filled orbitals is accentuated by a parallel decrease in the attractive two-electron interaction between the re and re orbitals which vanishes at the 3.2 A distance between the terminal carbon atoms. [Pg.14]

Coming back to aromatic anion radicals, a more accurate comparison between the experimental reaction kinetics and the predictions of the dissociative electron transfer theory revealed that the agreement is good when steric hindrance is maximal (tertiary carbon acceptors) and that the reaction is faster and faster than predicted as steric hindrance decreases, as discussed in detail in Section 3.2.2 (see, particularly, Figure 3.1). These results were interpreted as indicating an increase in the ET character of the reaction as steric hindrance increases. Similar conclusions were drawn from the temperature dependence of the kinetics, showing that the entropy of activation increases with steric hindrance, paralleling the increase in the ET character of the reaction. [Pg.241]


See other pages where Reaction kinetics Carbonate is mentioned: [Pg.151]    [Pg.151]    [Pg.211]    [Pg.346]    [Pg.2244]    [Pg.1231]    [Pg.90]    [Pg.23]    [Pg.316]    [Pg.345]    [Pg.181]    [Pg.262]    [Pg.152]    [Pg.413]    [Pg.524]    [Pg.532]    [Pg.360]    [Pg.487]    [Pg.217]    [Pg.410]    [Pg.162]    [Pg.50]    [Pg.376]    [Pg.594]    [Pg.2]    [Pg.55]    [Pg.670]    [Pg.241]    [Pg.50]    [Pg.508]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Carbon kinetics

© 2024 chempedia.info