Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat of reaction, formation

Explain in your own words the concepts of heat of reaction exothermic and endothermic reactions heat of formation combustion heat of combustion standard heats of formation, combustion, and reaction heating value of a fuel adiabatic flame temperature ignition temperature ignition lag lower and upper flammability limits and flash point of a fuel a flame blue and yellow flames flashback and detonation. [Pg.441]

Heat of Reaction (heat of formation of products minus feed) Operating Conditions Hydrocarbon Feed Rate Water Feed Rate (STM/FD)... [Pg.322]

Theoretical Considerations.—Calculations (CNDO/2, ab initio) on thiiren indicate that 3d-orbital participation is likely to be unimportant in the structure and bonding. Calculations on thiiren 1-oxide indicate an inversion barrier of ca. 20 kcal mol. The inversion barrier for S-protonated thiiren is calculated as 85 kcal mor. Thiiren is compared with azirine and oxiren. Other calculations (MINDO/3 and NDDO) on thiiren indicate that it should be relatively stable (heat of formation 205.4 kJ moT ) and that thiirens may be reasonable intermediates in reactions. Heats of formation of oxiren, IH-azirine, cyclopropene, and the cyclopropenyl anion were calculated also. Thiiren is predicted to be more stable than the acyclic, isomeric carbene (119), the zwitterion (120), and the cyclic zwitterion-carbene... [Pg.110]

Emphasis was put on providing a sound physicochemical basis for the modeling of the effects determining a reaction mechanism. Thus, methods were developed for the estimation of pXj-vahies, bond dissociation energies, heats of formation, frontier molecular orbital energies and coefficients, and stcric hindrance. [Pg.549]

Heats of reaction Heats of reaction can be obtained as differences between the beats of formation of the products and those of the starting materials of a reaction. In EROS, heats of reaction arc calculated on the basis of an additivity scheme as presented in Section 7.1. With such an evaluation, reactions under thermodynamic control can be selected preferentially (Figure 10.3-10). [Pg.552]

Semiempirical methods are parameterized to reproduce various results. Most often, geometry and energy (usually the heat of formation) are used. Some researchers have extended this by including dipole moments, heats of reaction, and ionization potentials in the parameterization set. A few methods have been parameterized to reproduce a specific property, such as electronic spectra or NMR chemical shifts. Semiempirical calculations can be used to compute properties other than those in the parameterization set. [Pg.32]

Heat of formation (AH ) the enthalpy change for formation of a compound directly from the ele ments is one type of heat of reaction In cases such as the formation of CO2 or H2O from the combustion of carbon or hydrogen respectively the heat of forma tion of a substance can be measured directly In most... [Pg.86]

Equations (1) and (2) are the heats of formation of carbon dioxide and water respectively Equation (3) is the reverse of the combustion of methane and so the heat of reaction is equal to the heat of combustion but opposite in sign The molar heat of formation of a substance is the enthalpy change for formation of one mole of the substance from the elements For methane AH = —75 kJ/mol... [Pg.86]

The heats of formation of most organic com pounds are derived from heats of reaction by arith metic manipulations similar to that shown Chemists find a table of AH values to be convenient because it replaces many separate tables of AH° values for indi vidual reaction types and permits AH° to be calcu lated for any reaction real or imaginary for which the heats of formation of reactants and products are available It is more appropriate for our purposes however to connect thermochemical data to chemi cal processes as directly as possible and therefore we will cite heats of particular reactions such as heats of combustion and heats of hydrogenation rather than heats of formation... [Pg.86]

You have seen that measurements of heats of reaction such as heats of combustion can pro vide quantitative information concerning the relative stability of constitutional isomers (Section 2 18) and stereoisomers (Section 3 11) The box in Section 2 18 described how heats of reaction can be manipulated arithmetically to generate heats of formation (AH ) for many molecules The following material shows how two different sources of thermo chemical information heats of formation and bond dissociation energies (see Table 4 3) can reveal whether a particular reaction is exothermic or en dothermic and by how much... [Pg.174]

Many problems with MNDO involve cases where the NDO approximation electron-electron repulsion is most important. AMI is an improvement over MNDO, even though it uses the same basic approximation. It is generally the most accurate semi-empirical method in HyperChem and is the method of choice for most problems. Altering part of the theoretical framework (the function describing repulsion between atomic cores) and assigning new parameters improves the performance of AMI. It deals with hydrogen bonds properly, produces accurate predictions of activation barriers for many reactions, and predicts heats of formation of molecules with an error that is about 40 percent smaller than with MNDO. [Pg.150]

Resonance stabilization energies are generally assessed from thermodynamic data. If we define to be the resonance stabilization energy of species i, then the heat of formation of that species will be less by an amount ej than for an otherwise equivalent molecule without resonance. Likewise, the AH for a reaction which is influenced by resonance effects is less by an amount Ae (A is the usual difference products minus reactants) than the AH for a reaction which is otherwise identical except for resonance effects ... [Pg.440]

Thermodynamic properties such as heats of reaction and heats of formation can be computed mote rehably by ab initio theory than by semiempirical MO methods (55). However, the Hterature of the method appropriate to the study should be carefully checked before a technique is selected. Finally, the role of computer graphics in evaluating quantum mechanical properties should not be overlooked. As seen in Figures 2—6, significant information can be conveyed with stick models or various surfaces with charge properties mapped onto them. Additionally, information about orbitals, such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which ate important sites of reactivity in electrophilic and nucleophilic reactions, can be plotted readily. Figure 7 shows representations of the HOMO and LUMO, respectively, for the antiulcer dmg Zantac. [Pg.163]

Oxidizers. The characteristics of the oxidizer affect the baUistic and mechanical properties of a composite propellant as well as the processibihty. Oxidizers are selected to provide the best combination of available oxygen, high density, low heat of formation, and maximum gas volume in reaction with binders. Increases in oxidizer content increase the density, the adiabatic flame temperature, and the specific impulse of a propellant up to a maximum. The most commonly used inorganic oxidizer in both composite and nitroceUulose-based rocket propellant is ammonium perchlorate. The primary combustion products of an ammonium perchlorate propellant and a polymeric binder containing C, H, and O are CO2, H2, O2, and HCl. Ammonium nitrate has been used in slow burning propellants, and where a smokeless exhaust is requited. Nitramines such as RDX and HMX have also been used where maximum energy is essential. [Pg.39]

The gasification is performed usiag oxygen and steam (qv), usually at elevated pressures. The steam—oxygen ratio along with reaction temperature and pressure determine the equiUbrium gas composition. The reaction rates for these reactions are relatively slow and heats of formation are negative. Catalysts maybe necessary for complete reaction (2,3,24,42,43). [Pg.65]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Ammonium Perchlorate. Heats of formation for the metal perchlorates are nearly the same as those for the corresponding chlorides, so that the reaction... [Pg.65]

Thermodynamic Properties. The heat of formation of the thiosulfate ion, —5.75 kJ/g (—1.37 kcal/g), was determined by studying the equihbrium of the following reaction ... [Pg.26]

Combustion. The primary reaction carried out in the gas turbine combustion chamber is oxidation of a fuel to release its heat content at constant pressure. Atomized fuel mixed with enough air to form a close-to-stoichiometric mixture is continuously fed into a primary zone. There its heat of formation is released at flame temperatures deterruined by the pressure. The heat content of the fuel is therefore a primary measure of the attainable efficiency of the overall system in terms of fuel consumed per unit of work output. Table 6 fists the net heat content of a number of typical gas turbine fuels. Net rather than gross heat content is a more significant measure because heat of vaporization of the water formed in combustion cannot be recovered in aircraft exhaust. The most desirable gas turbine fuels for use in aircraft, after hydrogen, are hydrocarbons. Fuels that are liquid at normal atmospheric pressure and temperature are the most practical and widely used aircraft fuels kerosene, with a distillation range from 150 to 300 °C, is the best compromise to combine maximum mass —heat content with other desirable properties. For ground turbines, a wide variety of gaseous and heavy fuels are acceptable. [Pg.412]

Oxidative degradation of [B qH q] and [B22H22] C to boric acid is extremely difficult and requires Kjeldahl digestion or neutral permanganate. The heat of reaction obtained from the permanganate degradation leads to a calculated heat of formation for [B qH q] (aq) of 92.5 21.1 kJ/mol (22.1 5.0 kcal/mol) (99). The oxidative coupling of both [B qH q] and has been studied ia some detail (100). [Pg.238]

In theory two carbanions, (189) and (190), can be formed by deprotonation of 3,5-dimethylisoxazole with a strong base. On the basis of MINDO/2 calculations for these two carbanions, the heat of formation of (189) is calculated to be about 33 kJ moF smaller than that of (190), and the carbanion (189) is thermodynamically more stable than the carbanion (190). The calculation is supported by the deuterium exchange reaction of 3,5-dimethylisoxazole with sodium methoxide in deuterated methanol. The rate of deuterium exchange of the 5-methyl protons is about 280 times faster than that of the 3-methyl protons (AAF = 13.0 kJ moF at room temperature) and its activation energy is about 121 kJ moF These results indicate that the methyl groups of 3,5-dimethylisoxazole are much less reactive than the methyl group of 2-methylpyridine and 2-methylquinoline, whose activation energies under the same reaction conditions were reported to be 105 and 88 kJ moF respectively (79H(12)1343). [Pg.49]

Enthalpy of Formation The ideal gas standard enthalpy (heat) of formation (AHJoqs) of chemical compound is the increment of enthalpy associated with the reaction of forming that compound in the ideal gas state from the constituent elements in their standard states, defined as the existing phase at a temperature of 298.15 K and one atmosphere (101.3 kPa). Sources for data are Refs. 15, 23, 24, 104, 115, and 116. The most accurate, but again complicated, estimation method is that of Benson et al. " A compromise between complexity and accuracy is based on the additive atomic group-contribution scheme of Joback his original units of kcal/mol have been converted to kj/mol by the conversion 1 kcal/mol = 4.1868 kJ/moL... [Pg.392]

Two standard estimation methods for heat of reaction and CART are Chetah 7.2 and NASA CET 89. Chetah Version 7.2 is a computer program capable of predicting both thermochemical properties and certain reactive chemical hazards of pure chemicals, mixtures or reactions. Available from ASTM, Chetah 7.2 uses Benson s method of group additivity to estimate ideal gas heat of formation and heat of decomposition. NASA CET 89 is a computer program that calculates the adiabatic decomposition temperature (maximum attainable temperature in a chemical system) and the equilibrium decomposition products formed at that temperature. It is capable of calculating CART values for any combination of materials, including reactants, products, solvents, etc. Melhem and Shanley (1997) describe the use of CART values in thermal hazard analysis. [Pg.23]


See other pages where Heat of reaction, formation is mentioned: [Pg.709]    [Pg.314]    [Pg.275]    [Pg.816]    [Pg.522]    [Pg.709]    [Pg.314]    [Pg.275]    [Pg.816]    [Pg.522]    [Pg.127]    [Pg.354]    [Pg.10]    [Pg.132]    [Pg.150]    [Pg.86]    [Pg.10]    [Pg.132]    [Pg.34]    [Pg.475]    [Pg.373]    [Pg.348]    [Pg.634]    [Pg.239]    [Pg.88]    [Pg.91]    [Pg.98]    [Pg.163]    [Pg.216]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Addition reactions, equilibria and alkyl radical heats of formation

Formation, heat

Heat of formation

Heat of formation heats

Heat of reaction

Heats of reaction and formation

Reaction XXXI.—Action of Heat on Sodium Formate

Reaction heat

Reactions heat of reaction

© 2024 chempedia.info